Prefix queries are generally being used to match part of a partial
index. We can support these indexes by using a function that accept
different types for each subset of the index.
What I found interesting is that in the generic StringFieldIndexer the
implementation for PrefixFromArgs would remove the trailing null, but
at least in these 2 cases we actually want a null terminated string.
We simply want fewer components in the string.
The TestServiceHealthEventsFromChanges function was over 1400 lines.
Attempting to debug test failures in test functions this large is
difficult. It requires scrolling to the line which defines the testcase
because the failure message only includes the line number of the
assertion, not the line number of the test case.
This is an excellent example of where test tables stop working well, and
start being a problem. To mitigate this problem, the runCase pattern can
be used. When one of these tests fails, a failure message will print the
line number of both the test case and the assertion. This allows a
developer to quickly jump to both of the relevant lines, signficanting
reducing the time it takes to debug test failures.
For example, one such failure could look like this:
catalog_events_test.go:1610: case: service reg, new node
catalog_events_test.go:1605: assertion failed: values are not equal
This enables it to be called for many upstreams or downstreams of a
service while only querying intentions once.
Additionally, decisions are now optionally denied due to L7 permissions
being present. This enables the function to be used to filter for
potential upstreams/downstreams of a service.
Previously this type was defined in structs, but unlike the other types in structs this type
is not used by RPC requests. By moving it to state we can better indicate that this is not
an API type, but part of the state implementation.
I added this recently without realizing that the method already existed and was named
NamespaceOrEmpty. Replace all calls to GetNamespace with NamespaceOrEmpty or NamespaceOrDefault
as appropriate.
Document that this comparison should roughly match MatchesKey
Only sort by overrideKey or service name, but not both
Add namespace to the sort.
The client side also builds a map of these based on the namespace/node/service key, so the only order
that really matters is the ordering of register/dereigster events.
Refactored out a function that can be used for both the snapshot and stream of events to translate
an event into an appropriate connect event.
Previously terminating gateway events would have used the wrong key in the snapshot, which would have
caused them to be filtered out later on.
Also removed an unused function, and some commented out code.
Health of a terminating gateway instance changes
- Generate an event for creating/destroying this instance of the terminating gateway,
duplicate it for each affected service
Co-Authored-By: Kyle Havlovitz <kylehav@gmail.com>
These new functional indexers provide a few advantages:
1. enterprise differences can be isolated to a single function (the
indexer function), making code easier to change
2. as a consequence of (1) we no longer need to wrap all the calls to
Txn operations, making code easier to read.
3. by removing reflection we should increase the performance of all
operations.
One important change is in making all the function signatures the same.
https://blog.golang.org/errors-are-values
An extra boolean return value for SingleIndexer.FromObject is superfluous.
The error value can indicate when the index value could not be created.
By removing this extra return value we can use the same signature for both
indexer functions.
This has the nice properly of a function being usable for both indexing operations.
By using a new pattern for more specific indexes. This allows us to use
the same index for both service checks and node checks. It removes the
abstraction around memdb.Txn operations, and isolates all of the
enterprise differences in a single place (the indexer).
registerSchema creates some indirection which is not necessary in this
case. newDBSchema can call each of the tables.
Enterprise tables can be added from the existing withEnterpriseSchema
shim.
Deleting from memdb inside an interation can cause a panic from Iterator.Next. This
case is technically safe (for now) because the iterator is using the root radix tree
not a modified one.
However this could break at any time if someone adds an insert or delete to the coordinates table
before this place in the function.
It also sets a bad example, because generally deletes in an interator are not safe. So this
commit uses the pattern we have in other places to move the deletes out of the iteration.
Using withEnterpriseSchema() we can apply any enterprise schema changes
with a single shim, removing the need to duplicate all of the table
definitions.
Also move all the catalog schemas to a new file to shrink catalog.go a bit.
* Fix bug in usage metrics that caused a negative count to occur
There were a couple of instances were usage metrics would do the wrong
thing and result in incorrect counts, causing the count to attempt to
decrement below zero and return an error. The usage metrics did not
account for various places where a single transaction could
delete/update/add multiple service instances at once.
We also remove the error when attempting to decrement below zero, and
instead just make sure we do not accidentally underflow the unsigned
integer. This is a more graceful failure than returning an error and not
allowing a transaction to commit.
* Add changelog
These types are used as values (not pointers) in other structs. Using a pointer receiver causes
problems when the value is printed. fmt will not call the String method if it is passed a value
and the String method has a pointer receiver. By using a value receiver the correct string is printed.
Also remove some unused methods.
Previously the tokens would fail to insert into the secondary's state
store because the AuthMethod field of the ACLToken did not point to a
known auth method from the primary.
Add a skip condition to all tests slower than 100ms.
This change was made using `gotestsum tool slowest` with data from the
last 3 CI runs of master.
See https://github.com/gotestyourself/gotestsum#finding-and-skipping-slow-tests
With this change:
```
$ time go test -count=1 -short ./agent
ok github.com/hashicorp/consul/agent 0.743s
real 0m4.791s
$ time go test -count=1 -short ./agent/consul
ok github.com/hashicorp/consul/agent/consul 4.229s
real 0m8.769s
```
The Catalog, Config Entry, KV and Session resources potentially re-validate the input as its coming in. We need to prevent snapshot restoration failures due to missing namespaces or namespaces that are being deleted in enterprise.
1. do a state store query to list intentions as the agent would do over in `agent/proxycfg` backing `agent/xds`
2. upgrade the database and do a fresh `service-intentions` config entry write
3. the blocking query inside of the agent cache in (1) doesn't notice (2)
Makes Payload a type with FilterByKey so that Payloads can implement
filtering by key. With this approach we don't need to expose a Namespace
field on Event, and we don't need to invest micro formats or require a
bunch of code to be aware of exactly how the key field is encoded.
The output of the previous assertions made it impossible to debug the tests without code changes.
With go-cmp comparing the entire slice we can see the full diffs making it easier to debug failures.
Required also converting some of the transaction functions to WriteTxn
because TxnRO() called the same helper as TxnRW.
This change allows us to return a memdb.Txn for read-only txn instead of
wrapping them with state.txn.
Extend Consul’s intentions model to allow for request-based access control enforcement for HTTP-like protocols in addition to the existing connection-based enforcement for unspecified protocols (e.g. tcp).
- Upgrade the ConfigEntry.ListAll RPC to be kind-aware so that older
copies of consul will not see new config entries it doesn't understand
replicate down.
- Add shim conversion code so that the old API/CLI method of interacting
with intentions will continue to work so long as none of these are
edited via config entry endpoints. Almost all of the read-only APIs will
continue to function indefinitely.
- Add new APIs that operate on individual intentions without IDs so that
the UI doesn't need to implement CAS operations.
- Add a new serf feature flag indicating support for
intentions-as-config-entries.
- The old line-item intentions way of interacting with the state store
will transparently flip between the legacy memdb table and the config
entry representations so that readers will never see a hiccup during
migration where the results are incomplete. It uses a piece of system
metadata to control the flip.
- The primary datacenter will begin migrating intentions into config
entries on startup once all servers in the datacenter are on a version
of Consul with the intentions-as-config-entries feature flag. When it is
complete the old state store representations will be cleared. We also
record a piece of system metadata indicating this has occurred. We use
this metadata to skip ALL of this code the next time the leader starts
up.
- The secondary datacenters continue to run the old intentions
replicator until all servers in the secondary DC and primary DC support
intentions-as-config-entries (via serf flag). Once this condition it met
the old intentions replicator ceases.
- The secondary datacenters replicate the new config entries as they are
migrated in the primary. When they detect that the primary has zeroed
it's old state store table it waits until all config entries up to that
point are replicated and then zeroes its own copy of the old state store
table. We also record a piece of system metadata indicating this has
occurred. We use this metadata to skip ALL of this code the next time
the leader starts up.
This adds a new very tiny memdb table and corresponding raft operation
for updating a very small effective map[string]string collection of
"system metadata". This can persistently record a fact about the Consul
state machine itself.
The first use of this feature will come in a later PR.
The subscribe endpoint needs to be able to inspect the payload to filter
events, and convert them into the protobuf types.
Use the protobuf CatalogOp type for the operation field, for now. In the
future if we end up with multiple interfaces we should be able to remove
the protobuf dependency by changing this to an int32 and adding a test
for the mapping between the values.
Make the value of the payload a concrete type instead of interface{}. We
can create other payloads for other event types.
The nodeCheck slice was being used as the first arg in append, which in some cases will modify the array backing the slice. This would lead to service checks for other services in the wrong event.
Also refactor some things to reduce the arguments to functions.
Creating a new readTxn does not work because it will not see the newly created objects that are about to be committed. Instead use the active write Txn.
Whenever an upsert/deletion of a config entry happens, within the open
state store transaction we speculatively test compile all discovery
chains that may be affected by the pending modification to verify that
the write would not create an erroneous scenario (such as splitting
traffic to a subset that did not exist).
If a single discovery chain evaluation references two config entries
with the same kind and name in different namespaces then sometimes the
upsert/deletion would be falsely rejected. It does not appear as though
this bug would've let invalid writes through to the state store so the
correction does not require a cleanup phase.