3.2 KiB
Performance
To achieve the best possible performance, it is useful to be aware of several tricks and sharp edges concerning PyO3's API.
extract
versus downcast
Pythonic API implemented using PyO3 are often polymorphic, i.e. they will accept &PyAny
and try to turn this into multiple more concrete types to which the requested operation is applied. This often leads to chains of calls to extract
, e.g.
# #![allow(dead_code)]
# use pyo3::prelude::*;
# use pyo3::{exceptions::PyTypeError, types::PyList};
fn frobnicate_list(list: &PyList) -> PyResult<&PyAny> {
todo!()
}
fn frobnicate_vec(vec: Vec<&PyAny>) -> PyResult<&PyAny> {
todo!()
}
#[pyfunction]
fn frobnicate(value: &PyAny) -> PyResult<&PyAny> {
if let Ok(list) = value.extract::<&PyList>() {
frobnicate_list(list)
} else if let Ok(vec) = value.extract::<Vec<&PyAny>>() {
frobnicate_vec(vec)
} else {
Err(PyTypeError::new_err("Cannot frobnicate that type."))
}
}
This suboptimal as the FromPyObject<T>
trait requires extract
to have a Result<T, PyErr>
return type. For native types like PyList
, it faster to use downcast
(which extract
calls internally) when the error value is ignored. This avoids the costly conversion of a PyDowncastError
to a PyErr
required to fulfil the FromPyObject
contract, i.e.
# #![allow(dead_code)]
# use pyo3::prelude::*;
# use pyo3::{exceptions::PyTypeError, types::PyList};
# fn frobnicate_list(list: &PyList) -> PyResult<&PyAny> { todo!() }
# fn frobnicate_vec(vec: Vec<&PyAny>) -> PyResult<&PyAny> { todo!() }
#
#[pyfunction]
fn frobnicate(value: &PyAny) -> PyResult<&PyAny> {
// Use `downcast` instead of `extract` as turning `PyDowncastError` into `PyErr` is quite costly.
if let Ok(list) = value.downcast::<PyList>() {
frobnicate_list(list)
} else if let Ok(vec) = value.extract::<Vec<&PyAny>>() {
frobnicate_vec(vec)
} else {
Err(PyTypeError::new_err("Cannot frobnicate that type."))
}
}
Access to GIL-bound reference implies access to GIL token
Calling Python::with_gil
is effectively a no-op when the GIL is already held, but checking that this is the case still has a cost. If an existing GIL token can not be accessed, for example when implementing a pre-existing trait, but a GIL-bound reference is available, this cost can be avoided by exploiting that access to GIL-bound reference gives zero-cost access to a GIL token via PyAny::py
.
For example, instead of writing
# #![allow(dead_code)]
# use pyo3::prelude::*;
# use pyo3::types::PyList;
struct Foo(Py<PyList>);
struct FooRef<'a>(&'a PyList);
impl PartialEq<Foo> for FooRef<'_> {
fn eq(&self, other: &Foo) -> bool {
Python::with_gil(|py| self.0.len() == other.0.as_ref(py).len())
}
}
use more efficient
# #![allow(dead_code)]
# use pyo3::prelude::*;
# use pyo3::types::PyList;
# struct Foo(Py<PyList>);
# struct FooRef<'a>(&'a PyList);
#
impl PartialEq<Foo> for FooRef<'_> {
fn eq(&self, other: &Foo) -> bool {
// Access to `&'a PyAny` implies access to `Python<'a>`.
let py = self.0.py();
self.0.len() == other.0.as_ref(py).len()
}
}