* combine into one checker
* combine and simplify ci checks
* add to test package list
* remove testing test
* only run deprecations check
* only run deprecations check
* remove unneeded repo check
* fix bash options
Co-authored-by: miagilepner <mia.epner@hashicorp.com>
Improve our build workflow execution time by using custom runners,
improved caching and conditional Web UI builds.
Runners
-------
We improve our build times[0] by using larger custom runners[1] when
building the UI and Vault.
Caching
-------
We improve Vault caching by keeping a cache for each build job. This
strategy has the following properties which should result in faster
build times when `go.sum` hasn't been changed from prior builds, or
when a pull request is retried or updated after a prior successful
build:
* Builds will restore cached Go modules and Go build cache according to
the Go version, platform, architecture, go tags, and hash of `go.sum`
that relates to each individual build workflow. This reduces the
amount of time it will take to download the cache on hits and upload
the cache on misses.
* Parallel build workflows won't clobber each others build cache. This
results in much faster compile times after cache hits because the Go
compiler can reuse the platform, architecture, and tag specific build
cache that it created on prior runs.
* Older modules and build cache will not be uploaded when creating a new
cache. This should result in lean cache sizes on an ongoing basis.
* On cache misses we will have to upload our compressed module and build
cache. This will slightly extend the build time for pull requests that
modify `go.sum`.
Web UI
------
We no longer build the web UI in every build workflow. Instead we separate
the UI building into its own workflow and cache the resulting assets.
The same UI assets are restored from cache during build worklows. This
strategy has the following properties:
* If the `ui` directory has not changed from prior builds we'll restore
`http/web_ui` from cache and skip building the UI for no reason.
* We continue to use the built-in `yarn` caching functionality in
`action/setup-node`. The default mode saves the `yarn` global cache.
to improve UI build times if the cache has not been modified.
Changes
-------
* Add per platform/archicture Go module and build caching
* Move UI building into a separate job and cache the result
* Restore UI cache during build
* Pin workflows
Notes
-----
[0] https://hashicorp.atlassian.net/browse/QT-578
[1] https://github.com/hashicorp/vault/actions/runs/5415830307/jobs/9844829929
Signed-off-by: Ryan Cragun <me@ryan.ec>
Add an updated `target_ec2_instances` module that is capable of
dynamically splitting target instances over subnet/az's that are
compatible with the AMI architecture and the associated instance type
for the architecture. Use the `target_ec2_instances` module where
necessary. Ensure that `raft` storage scenarios don't provision
unnecessary infrastructure with a new `target_ec2_shim` module.
After a lot of trial, the state of Ec2 spot instance capacity, their
associated APIs, and current support for different fleet types in AWS
Terraform provider, have proven to make using spot instances for
scenario targets too unreliable.
The current state of each method:
* `target_ec2_fleet`: unusable due to the fact that the `instant` type
does not guarantee fulfillment of either `spot` or `on-demand`
instance request types. The module does support both `on-demand` and
`spot` request types and is capable of bidding across a maximum of
four availability zones, which makes it an attractive choice if the
`instant` type would always fulfill requests. Perhaps a `request` type
with `wait_for_fulfillment` option like `aws_spot_fleet_request` would
make it more viable for future consideration.
* `target_ec2_spot_fleet`: more reliable if bidding for target instances
that have capacity in the chosen zone. Issues in the AWS provider
prevent us from bidding across multiple zones succesfully. Over the
last 2-3 months target capacity for the instance types we'd prefer to
use has dropped dramatically and the price is near-or-at on-demand.
The volatility for nearly no cost savings means we should put this
option on the shelf for now.
* `target_ec2_instances`: the most reliable method we've got. It is now
capable of automatically determing which subnets and availability
zones to provision targets in and has been updated to be usable for
both Vault and Consul targets. By default we use the cheapest medium
instance types that we've found are reliable to test vault.
* Update .gitignore
* enos/modules/create_vpc: create a subnet for every availability zone
* enos/modules/target_ec2_fleet: bid across the maximum of four
availability zones for targets
* enos/modules/target_ec2_spot_fleet: attempt to make the spot fleet bid
across more availability zones for targets
* enos/modules/target_ec2_instances: create module to use
ec2:RunInstances for scenario targets
* enos/modules/target_ec2_shim: create shim module to satisfy the
target module interface
* enos/scenarios: use target_ec2_shim for backend targets on raft
storage scenarios
* enos/modules/az_finder: remove unsed module
Signed-off-by: Ryan Cragun <me@ryan.ec>
Co-authored-by: Ryan Cragun <me@ryan.ec>