* test: use `T.TempDir` to create temporary test directory
This commit replaces `ioutil.TempDir` with `t.TempDir` in tests. The
directory created by `t.TempDir` is automatically removed when the test
and all its subtests complete.
Prior to this commit, temporary directory created using `ioutil.TempDir`
needs to be removed manually by calling `os.RemoveAll`, which is omitted
in some tests. The error handling boilerplate e.g.
defer func() {
if err := os.RemoveAll(dir); err != nil {
t.Fatal(err)
}
}
is also tedious, but `t.TempDir` handles this for us nicely.
Reference: https://pkg.go.dev/testing#T.TempDir
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
* test: fix TestLogmon_Start_restart on Windows
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
* test: fix failing TestConsul_Integration
t.TempDir fails to perform the cleanup properly because the folder is
still in use
testing.go:967: TempDir RemoveAll cleanup: unlinkat /tmp/TestConsul_Integration2837567823/002/191a6f1a-5371-cf7c-da38-220fe85d10e5/web/secrets: device or resource busy
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
This commit performs refactoring to pull out common service
registration objects into a new `client/serviceregistration`
package. This new package will form the base point for all
client specific service registration functionality.
The Consul specific implementation is not moved as it also
includes non-service registration implementations; this reduces
the blast radius of the changes as well.
The dynamic plugin registry assumes that plugins are singletons, which
matches the behavior of other Nomad plugins. But because dynamic
plugins like CSI are implemented by allocations, we need to handle the
possibility of multiple allocations for a given plugin type + ID, as
well as behaviors around interleaved allocation starts and stops.
Update the data structure for the dynamic registry so that more recent
allocations take over as the instance manager singleton, but we still
preserve the previous running allocations so that restores work
without racing.
Multiple allocations can run on a client for the same plugin, even if
only during updates. Provide each plugin task a unique path for the
control socket so that the tasks don't interfere with each other.
In order to minimize this change while keeping a simple version of the
behavior, we set `lastOk` to the current time less the intial server
connection timeout. If the client starts and never contacts the
server, it will stop all configured tasks after the initial server
connection grace period, on the assumption that we've been out of
touch longer than any configured `stop_after_client_disconnect`.
The more complex state behavior might be justified later, but we
should learn about failure modes first.
- track lastHeartbeat, the client local time of the last successful
heartbeat round trip
- track allocations with `stop_after_client_disconnect` configured
- trigger allocation destroy (which handles cleanup)
- restore heartbeat/killable allocs tracking when allocs are recovered from disk
- on client restart, stop those allocs after a grace period if the
servers are still partioned
In order to correctly fingerprint dynamic plugins on client restarts,
we need to persist a handle to the plugin (that is, connection info)
to the client state store.
The dynamic registry will sync automatically to the client state
whenever it receives a register/deregister call.
Fix some docstring typos and fix noisy log message during client restarts.
A log for the common case where the plugin socket isn't ready yet
isn't actionable by the operator so having it at info is just noise.
There is a case for always canonicalizing alloc.Job field when
canonicalizing the alloc. I'm less certain of implications though, and
the job canonicalize hasn't changed for a long time.
Here, we special case client restore from database as it's probably the
most relevant part. When receiving an alloc from RPC, the data should
be fresh enough.
This commit ensures that Alloc.AllocatedResources is properly populated
when read from persistence stores (namely Raft and client state store).
The alloc struct may have been written previously by an arbitrary old
version that may only populate Alloc.TaskResources.
The test is sadly quite complicated and peeks into things (logmon's
reattach config) AR doesn't normally have access to.
However, I couldn't find another way of asserting logmon got cleaned up
without resorting to smaller unit tests. Smaller unit tests risk
re-implementing dependencies in an unrealistic way, so I opted for an
ugly integration test.
Fixes an issue where if a task was restarted after restating the client,
the task dir environment variables would not be populated. This PR fixes
this for both upgrades from 0.8.X and for normal 0.9 restarts.
* master: (23 commits)
tests: avoid assertion in goroutine
spell check
ci: run checkscripts
tests: deflake TestRktDriver_StartWaitRecoverWaitStop
drivers/rkt: Remove unused github.com/rkt/rkt
drivers/rkt: allow development on non-linux
cli: Hide `nomad docker_logger` from help output
api: test api and structs are in sync
goimports until make check is happy
nil check node resources to prevent panic
tr: use context in as select statement
move pluginutils -> helper/pluginutils
vet
goimports
gofmt
Split hclspec
move hclutils
Driver tests do not use hcl2/hcl, hclspec, or hclutils
move reattach config
loader and singleton
...
Unfortunately I don't know how to test these errors. As far as I can
tell they should only happen if there was a programming error in the
upgrade code or the underlying boltdb was corrupted somehow.
* Prefix task bucket with task- to prevent name conflicts
* Shorten device manager bucket name
* Remove commented out outdated var
* Update layout comment
The driver manager is modeled after the device manager and is started by the client.
It's responsible for handling driver lifecycle and reattachment state, as well as
processing the incomming fingerprint and task events from each driver. The mananger
exposes a method for registering event handlers for task events that is used by the
task runner to update the server when a task has been updated with an event.
Since driver fingerprinting has been implemented by the driver manager, it is no
longer needed in the fingerprint mananger and has been removed.
Introduce a device manager that manages the lifecycle of device plugins
on the client. It fingerprints, collects stats, and forwards Reserve
requests to the correct plugin. The manager, also handles device plugins
failing and validates their output.