When registering a node with a new node pool in a non-authoritative
region we can't create the node pool because this new pool will not be
replicated to other regions.
This commit modifies the node registration logic to only allow automatic
node pool creation in the authoritative region.
In non-authoritative regions, the client is registered, but the node
pool is not created. The client is kept in the `initialing` status until
its node pool is created in the authoritative region and replicated to
the client's region.
Implementation of the base work for the new node pools feature. It includes a new `NodePool` struct and its corresponding state store table.
Upon start the state store is populated with two built-in node pools that cannot be modified nor deleted:
* `all` is a node pool that always includes all nodes in the cluster.
* `default` is the node pool where nodes that don't specify a node pool in their configuration are placed.
* Upgrade from hashicorp/go-msgpack v1.1.5 to v2.1.0
Fixes#16808
* Update hashicorp/net-rpc-msgpackrpc to v2 to match go-msgpack
* deps: use go-msgpack v2.0.0
go-msgpack v2.1.0 includes some code changes that we will need to
investigate furthere to assess its impact on Nomad, so keeping this
dependency on v2.0.0 for now since it's no-op.
---------
Co-authored-by: Luiz Aoqui <luiz@hashicorp.com>
Adds a new configuration to clients to optionally allow them to drain their
workloads on shutdown. The client sends the `Node.UpdateDrain` RPC targeting
itself and then monitors the drain state as seen by the server until the drain
is complete or the deadline expires. If it loses connection with the server, it
will monitor local client status instead to ensure allocations are stopped
before exiting.
* api: enable support for setting original source alongside job
This PR adds support for setting job source material along with
the registration of a job.
This includes a new HTTP endpoint and a new RPC endpoint for
making queries for the original source of a job. The
HTTP endpoint is /v1/job/<id>/submission?version=<version> and
the RPC method is Job.GetJobSubmission.
The job source (if submitted, and doing so is always optional), is
stored in the job_submission memdb table, separately from the
actual job. This way we do not incur overhead of reading the large
string field throughout normal job operations.
The server config now includes job_max_source_size for configuring
the maximum size the job source may be, before the server simply
drops the source material. This should help prevent Bad Things from
happening when huge jobs are submitted. If the value is set to 0,
all job source material will be dropped.
* api: avoid writing var content to disk for parsing
* api: move submission validation into RPC layer
* api: return an error if updating a job submission without namespace or job id
* api: be exact about the job index we associate a submission with (modify)
* api: reword api docs scheduling
* api: prune all but the last 6 job submissions
* api: protect against nil job submission in job validation
* api: set max job source size in test server
* api: fixups from pr
This change adds a new table that will store ACL binding rule
objects. The two indexes allow fast lookups by their ID, or by
which auth method they are linked to. Snapshot persist and
restore functionality ensures this table can be saved and
restored from snapshots.
In order to write and delete the object to state, new Raft messages
have been added.
All RPC request and response structs, along with object functions
such as diff and canonicalize have been included within this work
as it is nicely separated from the other areas of work.
* scheduler: create placements for non-register MRD
For multiregion jobs, the scheduler does not create placements on
registration because the deployment must wait for the other regions.
Once of these regions will then trigger the deployment to run.
Currently, this is done in the scheduler by considering any eval for a
multiregion job as "paused" since it's expected that another region will
eventually unpause it.
This becomes a problem where evals not triggered by a job registration
happen, such as on a node update. These types of regional changes do not
have other regions waiting to progress the deployment, and so they were
never resulting in placements.
The fix is to create a deployment at job registration time. This
additional piece of state allows the scheduler to differentiate between
a multiregion change, where there are other regions engaged in the
deployment so no placements are required, from a regional change, where
the scheduler does need to create placements.
This deployment starts in the new "initializing" status to signal to the
scheduler that it needs to compute the initial deployment state. The
multiregion deployment will wait until this deployment state is
persisted and its starts is set to "pending". Without this state
transition it's possible to hit a race condition where the plan applier
and the deployment watcher may step of each other and overwrite their
changes.
* changelog: add entry for #15325
After Deployments were added in Nomad 0.6.0, the `AllocUpdateRequestType` raft
log entry was no longer in use. Mark this as deprecated, remove the associated
dead code, and remove references to the metrics it emits from the docs. We'll
leave the entry itself just in case we encounter old raft logs that we need to
be able to safely load.
During unusual outage recovery scenarios on large clusters, a backlog of
millions of evaluations can appear. In these cases, the `eval delete` command can
put excessive load on the cluster by listing large sets of evals to extract the
IDs and then sending larges batches of IDs. Although the command's batch size
was carefully tuned, we still need to be JSON deserialize, re-serialize to
MessagePack, send the log entries through raft, and get the FSM applied.
To improve performance of this recovery case, move the batching process into the
RPC handler and the state store. The design here is a little weird, so let's
look a the failed options first:
* A naive solution here would be to just send the filter as the raft request and
let the FSM apply delete the whole set in a single operation. Benchmarking with
1M evals on a 3 node cluster demonstrated this can block the FSM apply for
several minutes, which puts the cluster at risk if there's a leadership
failover (the barrier write can't be made while this apply is in-flight).
* A less naive but still bad solution would be to have the RPC handler filter
and paginate, and then hand a list of IDs to the existing raft log
entry. Benchmarks showed this blocked the FSM apply for 20-30s at a time and
took roughly an hour to complete.
Instead, we're filtering and paginating in the RPC handler to find a page token,
and then passing both the filter and page token in the raft log. The FSM apply
recreates the paginator using the filter and page token to get roughly the same
page of evaluations, which it then deletes. The pagination process is fairly
cheap (only abut 5% of the total FSM apply time), so counter-intuitively this
rework ends up being much faster. A benchmark of 1M evaluations showed this
blocked the FSM apply for 20-30ms at a time (typical for normal operations) and
completes in less than 4 minutes.
Note that, as with the existing design, this delete is not consistent: a new
evaluation inserted "behind" the cursor of the pagination will fail to be
deleted.
This PR implements ACLAuthMethod type, acl_auth_methods table schema and crud state store methods. It also updates nomadSnapshot.Persist and nomadSnapshot.Restore methods in order for them to work with the new table, and adds two new Raft messages: ACLAuthMethodsUpsertRequestType and ACLAuthMethodsDeleteRequestType
This PR is part of the SSO work captured under ☂️ ticket #13120.
ACL Roles along with policies and global token will be replicated
from the authoritative region to all federated regions. This
involves a new replication loop running on the federated leader.
Policies and roles may be replicated at different times, meaning
the policies and role references may not be present within the
local state upon replication upsert. In order to bypass the RPC
and state check, a new RPC request parameter has been added. This
is used by the replication process; all other callers will trigger
the ACL role policy validation check.
There is a new ACL RPC endpoint to allow the reading of a set of
ACL Roles which is required by the replication process and matches
ACL Policies and Tokens. A bug within the ACL Role listing RPC has
also been fixed which returned incorrect data during blocking
queries where a deletion had occurred.
Move conflict resolution implementation into the state store with a new Apply RPC.
This also makes the RPC for secure variables much more similar to Consul's KV,
which will help us support soft deletes in a post-1.4.0 version of Nomad.
Reimplement quotas in the state store functions.
Co-authored-by: Charlie Voiselle <464492+angrycub@users.noreply.github.com>
This commit includes the new state schema for ACL roles along with
state interaction functions for CRUD actions.
The change also includes snapshot persist and restore
functionality and the addition of FSM messages for Raft updates
which will come via RPC endpoints.
When applying a raft log to expire ACL tokens, we need to use a
timestamp provided by the leader so that the result is deterministic
across servers. Use leader's timestamp from RPC call
When the `Full` flag is passed for key rotation, we kick off a core
job to decrypt and re-encrypt all the secure variables so that they
use the new key.
This PR splits SecureVariable into SecureVariableDecrypted and
SecureVariableEncrypted in order to use the type system to help
verify that cleartext secret material is not committed to file.
* Make Encrypt function return KeyID
* Split SecureVariable
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Stream snapshot to FSM when restoring from archive
The `RestoreFromArchive` helper decompresses the snapshot archive to a
temporary file before reading it into the FSM. For large snapshots
this performs a lot of disk IO. Stream decompress the snapshot as we
read it, without first writing to a temporary file.
Add bexpr filters to the `RestoreFromArchive` helper.
The operator can pass these as `-filter` arguments to `nomad operator
snapshot state` (and other commands in the future) to include only
desired data when reading the snapshot.
CSI `CreateVolume` RPC is idempotent given that the topology,
capabilities, and parameters are unchanged. CSI volumes have many
user-defined fields that are immutable once set, and many fields that
are not user-settable.
Update the `Register` RPC so that updating a volume via the API merges
onto any existing volume without touching Nomad-controlled fields,
while validating it with the same strict requirements expected for
idempotent `CreateVolume` RPCs.
Also, clarify that this state store method is used for everything, not just
for the `Register` RPC.
These API endpoints now return results in chronological order. They
can return results in reverse chronological order by setting the
query parameter ascending=true.
- Eval.List
- Deployment.List
Some operators use very long group/task `shutdown_delay` settings to
safely drain network connections to their workloads after service
deregistration. But during incident response, they may want to cause
that drain to be skipped so they can quickly shed load.
Provide a `-no-shutdown-delay` flag on the `nomad alloc stop` and
`nomad job stop` commands that bypasses the delay. This sets a new
desired transition state on the affected allocations that the
allocation/task runner will identify during pre-kill on the client.
Note (as documented here) that using this flag will almost always
result in failed inbound network connections for workloads as the
tasks will exit before clients receive updated service discovery
information and won't be gracefully drained.
node drain: use msgtype on txn so that events are emitted
wip: encoding extension to add Node.Drain field back to API responses
new approach for hiding Node.SecretID in the API, using `json` tag
documented this approach in the contributing guide
refactored the JSON handlers with extensions
modified event stream encoding to use the go-msgpack encoders with the extensions
RPC endpoints for the user-driven APIs (`UpsertOneTimeToken` and
`ExchangeOneTimeToken`) and token expiration (`ExpireOneTimeTokens`).
Includes adding expiration to the periodic core GC job.
* upsertaclpolicies
* delete acl policies msgtype
* upsert acl policies msgtype
* delete acl tokens msgtype
* acl bootstrap msgtype
wip unsubscribe on token delete
test that subscriptions are closed after an ACL token has been deleted
Start writing policyupdated test
* update test to use before/after policy
* add SubscribeWithACLCheck to run acl checks on subscribe
* update rpc endpoint to use broker acl check
* Add and use subscriptions.closeSubscriptionFunc
This fixes the issue of not being able to defer unlocking the mutex on
the event broker in the for loop.
handle acl policy updates
* rpc endpoint test for terminating acl change
* add comments
Co-authored-by: Kris Hicks <khicks@hashicorp.com>