open-nomad/nomad/structs/structs.go

1752 lines
47 KiB
Go
Raw Normal View History

2015-06-01 15:49:10 +00:00
package structs
2015-06-05 22:21:17 +00:00
import (
"bytes"
2015-11-21 20:34:01 +00:00
"crypto/sha1"
2015-09-15 17:46:10 +00:00
"errors"
2015-06-05 22:41:03 +00:00
"fmt"
2015-11-21 20:34:01 +00:00
"io"
"reflect"
"regexp"
"strings"
2015-06-05 22:41:03 +00:00
"time"
2015-06-05 22:21:17 +00:00
"github.com/hashicorp/go-msgpack/codec"
2015-09-15 17:46:10 +00:00
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-version"
2015-06-05 22:21:17 +00:00
)
2015-06-05 22:41:03 +00:00
var (
2015-11-03 21:54:29 +00:00
ErrNoLeader = fmt.Errorf("No cluster leader")
ErrNoRegionPath = fmt.Errorf("No path to region")
defaultServiceJobRestartPolicy = RestartPolicy{
Delay: 15 * time.Second,
Attempts: 2,
Interval: 1 * time.Minute,
}
defaultBatchJobRestartPolicy = RestartPolicy{
2015-11-03 21:54:29 +00:00
Delay: 15 * time.Second,
Attempts: 15,
}
2015-06-05 22:41:03 +00:00
)
2015-06-01 15:49:10 +00:00
type MessageType uint8
const (
NodeRegisterRequestType MessageType = iota
NodeDeregisterRequestType
2015-07-04 01:41:36 +00:00
NodeUpdateStatusRequestType
NodeUpdateDrainRequestType
JobRegisterRequestType
JobDeregisterRequestType
EvalUpdateRequestType
EvalDeleteRequestType
2015-08-04 21:04:33 +00:00
AllocUpdateRequestType
AllocClientUpdateRequestType
2015-06-01 15:49:10 +00:00
)
const (
// IgnoreUnknownTypeFlag is set along with a MessageType
// to indicate that the message type can be safely ignored
// if it is not recognized. This is for future proofing, so
// that new commands can be added in a way that won't cause
// old servers to crash when the FSM attempts to process them.
IgnoreUnknownTypeFlag MessageType = 128
)
2015-06-05 22:21:17 +00:00
2015-06-05 22:41:03 +00:00
// RPCInfo is used to describe common information about query
type RPCInfo interface {
RequestRegion() string
IsRead() bool
AllowStaleRead() bool
}
// QueryOptions is used to specify various flags for read queries
type QueryOptions struct {
// The target region for this query
Region string
2015-06-07 18:18:59 +00:00
// If set, wait until query exceeds given index. Must be provided
// with MaxQueryTime.
MinQueryIndex uint64
// Provided with MinQueryIndex to wait for change.
MaxQueryTime time.Duration
2015-06-05 22:41:03 +00:00
// If set, any follower can service the request. Results
// may be arbitrarily stale.
AllowStale bool
}
func (q QueryOptions) RequestRegion() string {
return q.Region
}
// QueryOption only applies to reads, so always true
func (q QueryOptions) IsRead() bool {
return true
}
func (q QueryOptions) AllowStaleRead() bool {
return q.AllowStale
}
type WriteRequest struct {
// The target region for this write
2015-06-05 22:41:03 +00:00
Region string
}
func (w WriteRequest) RequestRegion() string {
// The target region for this request
return w.Region
}
// WriteRequest only applies to writes, always false
func (w WriteRequest) IsRead() bool {
return false
}
func (w WriteRequest) AllowStaleRead() bool {
return false
}
// QueryMeta allows a query response to include potentially
// useful metadata about a query
type QueryMeta struct {
// This is the index associated with the read
Index uint64
// If AllowStale is used, this is time elapsed since
// last contact between the follower and leader. This
// can be used to gauge staleness.
LastContact time.Duration
// Used to indicate if there is a known leader node
KnownLeader bool
}
// WriteMeta allows a write response to includ e potentially
// useful metadata about the write
type WriteMeta struct {
// This is the index associated with the write
Index uint64
}
2015-06-07 18:18:59 +00:00
// NodeRegisterRequest is used for Node.Register endpoint
2015-06-07 18:18:59 +00:00
// to register a node as being a schedulable entity.
type NodeRegisterRequest struct {
Node *Node
WriteRequest
}
// NodeDeregisterRequest is used for Node.Deregister endpoint
2015-07-04 01:41:36 +00:00
// to deregister a node as being a schedulable entity.
type NodeDeregisterRequest struct {
2015-07-04 01:41:36 +00:00
NodeID string
WriteRequest
}
// NodeUpdateStatusRequest is used for Node.UpdateStatus endpoint
2015-07-04 01:41:36 +00:00
// to update the status of a node.
type NodeUpdateStatusRequest struct {
2015-07-04 01:41:36 +00:00
NodeID string
Status string
WriteRequest
}
// NodeUpdateDrainRequest is used for updatin the drain status
type NodeUpdateDrainRequest struct {
NodeID string
Drain bool
WriteRequest
}
// NodeEvaluateRequest is used to re-evaluate the ndoe
type NodeEvaluateRequest struct {
NodeID string
WriteRequest
}
2015-07-06 21:23:15 +00:00
// NodeSpecificRequest is used when we just need to specify a target node
type NodeSpecificRequest struct {
NodeID string
QueryOptions
2015-07-06 21:23:15 +00:00
}
// JobRegisterRequest is used for Job.Register endpoint
// to register a job as being a schedulable entity.
type JobRegisterRequest struct {
Job *Job
WriteRequest
}
// JobDeregisterRequest is used for Job.Deregister endpoint
// to deregister a job as being a schedulable entity.
type JobDeregisterRequest struct {
JobID string
WriteRequest
}
// JobEvaluateRequest is used when we just need to re-evaluate a target job
type JobEvaluateRequest struct {
JobID string
WriteRequest
}
// JobSpecificRequest is used when we just need to specify a target job
type JobSpecificRequest struct {
JobID string
2015-08-15 19:59:10 +00:00
QueryOptions
}
2015-09-06 19:18:45 +00:00
// JobListRequest is used to parameterize a list request
type JobListRequest struct {
QueryOptions
}
2015-09-06 21:28:29 +00:00
// NodeListRequest is used to parameterize a list request
type NodeListRequest struct {
QueryOptions
}
// EvalUpdateRequest is used for upserting evaluations.
type EvalUpdateRequest struct {
2015-08-15 21:22:21 +00:00
Evals []*Evaluation
EvalToken string
WriteRequest
}
// EvalDeleteRequest is used for deleting an evaluation.
type EvalDeleteRequest struct {
2015-08-15 23:07:22 +00:00
Evals []string
Allocs []string
WriteRequest
}
// EvalSpecificRequest is used when we just need to specify a target evaluation
type EvalSpecificRequest struct {
EvalID string
QueryOptions
}
// EvalAckRequest is used to Ack/Nack a specific evaluation
type EvalAckRequest struct {
EvalID string
Token string
WriteRequest
}
2015-07-24 04:58:51 +00:00
// EvalDequeueRequest is used when we want to dequeue an evaluation
type EvalDequeueRequest struct {
Schedulers []string
Timeout time.Duration
WriteRequest
}
2015-09-06 23:01:16 +00:00
// EvalListRequest is used to list the evaluations
type EvalListRequest struct {
QueryOptions
}
2015-07-27 22:31:49 +00:00
// PlanRequest is used to submit an allocation plan to the leader
type PlanRequest struct {
Plan *Plan
WriteRequest
}
2015-08-04 21:04:33 +00:00
// AllocUpdateRequest is used to submit changes to allocations, either
// to cause evictions or to assign new allocaitons. Both can be done
// within a single transaction
type AllocUpdateRequest struct {
// Alloc is the list of new allocations to assign
Alloc []*Allocation
WriteRequest
2015-08-04 21:04:33 +00:00
}
2015-09-06 22:34:28 +00:00
// AllocListRequest is used to request a list of allocations
type AllocListRequest struct {
QueryOptions
}
2015-09-06 22:46:45 +00:00
// AllocSpecificRequest is used to query a specific allocation
type AllocSpecificRequest struct {
AllocID string
QueryOptions
}
2015-08-15 19:59:10 +00:00
// GenericRequest is used to request where no
// specific information is needed.
type GenericRequest struct {
QueryOptions
}
2015-07-04 01:41:36 +00:00
// GenericResponse is used to respond to a request where no
// specific response information is needed.
type GenericResponse struct {
WriteMeta
}
2015-08-15 19:59:10 +00:00
const (
ProtocolVersion = "protocol"
APIMajorVersion = "api.major"
APIMinorVersion = "api.minor"
)
// VersionResponse is used for the Status.Version reseponse
type VersionResponse struct {
2015-08-15 20:08:06 +00:00
Build string
Versions map[string]int
2015-08-15 19:59:10 +00:00
QueryMeta
}
// JobRegisterResponse is used to respond to a job registration
type JobRegisterResponse struct {
EvalID string
EvalCreateIndex uint64
JobModifyIndex uint64
QueryMeta
}
// JobDeregisterResponse is used to respond to a job deregistration
type JobDeregisterResponse struct {
EvalID string
EvalCreateIndex uint64
JobModifyIndex uint64
QueryMeta
}
// NodeUpdateResponse is used to respond to a node update
type NodeUpdateResponse struct {
2015-08-23 00:37:50 +00:00
HeartbeatTTL time.Duration
EvalIDs []string
EvalCreateIndex uint64
NodeModifyIndex uint64
QueryMeta
}
2015-09-07 03:00:12 +00:00
// NodeDrainUpdateResponse is used to respond to a node drain update
type NodeDrainUpdateResponse struct {
EvalIDs []string
EvalCreateIndex uint64
NodeModifyIndex uint64
QueryMeta
}
// NodeAllocsResponse is used to return allocs for a single node
type NodeAllocsResponse struct {
Allocs []*Allocation
QueryMeta
}
2015-07-06 21:23:15 +00:00
// SingleNodeResponse is used to return a single node
type SingleNodeResponse struct {
Node *Node
QueryMeta
}
2015-09-06 21:28:29 +00:00
// JobListResponse is used for a list request
type NodeListResponse struct {
Nodes []*NodeListStub
QueryMeta
}
// SingleJobResponse is used to return a single job
type SingleJobResponse struct {
Job *Job
QueryMeta
}
2015-09-06 19:18:45 +00:00
// JobListResponse is used for a list request
type JobListResponse struct {
Jobs []*JobListStub
QueryMeta
}
2015-09-06 22:46:45 +00:00
// SingleAllocResponse is used to return a single allocation
type SingleAllocResponse struct {
Alloc *Allocation
QueryMeta
}
2015-09-06 19:18:45 +00:00
// JobAllocationsResponse is used to return the allocations for a job
type JobAllocationsResponse struct {
Allocations []*AllocListStub
2015-09-06 19:18:45 +00:00
QueryMeta
}
// JobEvaluationsResponse is used to return the evaluations for a job
type JobEvaluationsResponse struct {
Evaluations []*Evaluation
QueryMeta
}
// SingleEvalResponse is used to return a single evaluation
type SingleEvalResponse struct {
Eval *Evaluation
QueryMeta
}
// EvalDequeueResponse is used to return from a dequeue
type EvalDequeueResponse struct {
Eval *Evaluation
Token string
QueryMeta
}
2015-07-27 22:31:49 +00:00
// PlanResponse is used to return from a PlanRequest
type PlanResponse struct {
Result *PlanResult
WriteMeta
}
2015-09-06 22:34:28 +00:00
// AllocListResponse is used for a list request
type AllocListResponse struct {
Allocations []*AllocListStub
QueryMeta
}
2015-09-06 23:01:16 +00:00
// EvalListResponse is used for a list request
type EvalListResponse struct {
Evaluations []*Evaluation
QueryMeta
}
// EvalAllocationsResponse is used to return the allocations for an evaluation
type EvalAllocationsResponse struct {
Allocations []*AllocListStub
QueryMeta
}
const (
NodeStatusInit = "initializing"
NodeStatusReady = "ready"
NodeStatusDown = "down"
)
2015-08-13 23:40:51 +00:00
// ShouldDrainNode checks if a given node status should trigger an
// evaluation. Some states don't require any further action.
2015-08-13 23:40:51 +00:00
func ShouldDrainNode(status string) bool {
switch status {
2015-09-07 02:47:02 +00:00
case NodeStatusInit, NodeStatusReady:
return false
2015-09-07 02:47:02 +00:00
case NodeStatusDown:
return true
default:
panic(fmt.Sprintf("unhandled node status %s", status))
}
}
// ValidNodeStatus is used to check if a node status is valid
func ValidNodeStatus(status string) bool {
switch status {
2015-09-07 02:47:02 +00:00
case NodeStatusInit, NodeStatusReady, NodeStatusDown:
return true
default:
return false
}
}
// Node is a representation of a schedulable client node
type Node struct {
// ID is a unique identifier for the node. It can be constructed
// by doing a concatenation of the Name and Datacenter as a simple
// approach. Alternatively a UUID may be used.
ID string
2015-06-07 18:18:59 +00:00
// Datacenter for this node
Datacenter string
2015-06-07 19:14:41 +00:00
// Node name
Name string
2015-06-07 18:18:59 +00:00
// Attributes is an arbitrary set of key/value
// data that can be used for constraints. Examples
// include "kernel.name=linux", "arch=386", "driver.docker=1",
// "docker.runtime=1.8.3"
Attributes map[string]string
2015-06-07 18:18:59 +00:00
// Resources is the available resources on the client.
// For example 'cpu=2' 'memory=2048'
Resources *Resources
2015-06-07 18:18:59 +00:00
// Reserved is the set of resources that are reserved,
// and should be subtracted from the total resources for
// the purposes of scheduling. This may be provide certain
// high-watermark tolerances or because of external schedulers
// consuming resources.
Reserved *Resources
2015-06-07 18:18:59 +00:00
// Links are used to 'link' this client to external
// systems. For example 'consul=foo.dc1' 'aws=i-83212'
// 'ami=ami-123'
Links map[string]string
2015-06-07 18:18:59 +00:00
// Meta is used to associate arbitrary metadata with this
// client. This is opaque to Nomad.
Meta map[string]string
// NodeClass is an opaque identifier used to group nodes
// together for the purpose of determining scheduling pressure.
NodeClass string
2015-09-07 02:47:02 +00:00
// Drain is controlled by the servers, and not the client.
// If true, no jobs will be scheduled to this node, and existing
// allocations will be drained.
Drain bool
// Status of this node
Status string
2015-07-04 00:50:54 +00:00
2015-08-15 20:08:06 +00:00
// StatusDescription is meant to provide more human useful information
StatusDescription string
2015-07-04 00:50:54 +00:00
// Raft Indexes
CreateIndex uint64
ModifyIndex uint64
2015-06-07 18:18:59 +00:00
}
// TerminalStatus returns if the current status is terminal and
// will no longer transition.
func (n *Node) TerminalStatus() bool {
switch n.Status {
case NodeStatusDown:
return true
default:
return false
}
}
2015-09-06 22:34:28 +00:00
// Stub returns a summarized version of the node
func (n *Node) Stub() *NodeListStub {
return &NodeListStub{
ID: n.ID,
Datacenter: n.Datacenter,
Name: n.Name,
NodeClass: n.NodeClass,
2015-09-07 02:47:02 +00:00
Drain: n.Drain,
2015-09-06 22:34:28 +00:00
Status: n.Status,
StatusDescription: n.StatusDescription,
CreateIndex: n.CreateIndex,
ModifyIndex: n.ModifyIndex,
}
}
// NodeListStub is used to return a subset of job information
// for the job list
type NodeListStub struct {
ID string
Datacenter string
Name string
NodeClass string
2015-09-07 02:47:02 +00:00
Drain bool
2015-09-06 22:34:28 +00:00
Status string
StatusDescription string
CreateIndex uint64
ModifyIndex uint64
}
2015-06-07 18:18:59 +00:00
// Resources is used to define the resources available
// on a client
type Resources struct {
2015-09-23 18:14:32 +00:00
CPU int
2015-09-15 00:43:42 +00:00
MemoryMB int `mapstructure:"memory"`
DiskMB int `mapstructure:"disk"`
IOPS int
Networks []*NetworkResource
2015-06-07 18:18:59 +00:00
}
2015-09-13 21:30:45 +00:00
// Copy returns a deep copy of the resources
func (r *Resources) Copy() *Resources {
newR := new(Resources)
*newR = *r
n := len(r.Networks)
newR.Networks = make([]*NetworkResource, n)
for i := 0; i < n; i++ {
newR.Networks[i] = r.Networks[i].Copy()
}
return newR
}
// NetIndex finds the matching net index using device name
func (r *Resources) NetIndex(n *NetworkResource) int {
2015-08-05 00:23:42 +00:00
for idx, net := range r.Networks {
if net.Device == n.Device {
2015-09-12 23:21:57 +00:00
return idx
}
}
return -1
}
2015-08-05 00:32:57 +00:00
// Superset checks if one set of resources is a superset
// of another. This ignores network resources, and the NetworkIndex
// should be used for that.
func (r *Resources) Superset(other *Resources) (bool, string) {
2015-08-05 00:32:57 +00:00
if r.CPU < other.CPU {
return false, "cpu exhausted"
2015-08-05 00:32:57 +00:00
}
if r.MemoryMB < other.MemoryMB {
return false, "memory exhausted"
2015-08-05 00:32:57 +00:00
}
if r.DiskMB < other.DiskMB {
return false, "disk exhausted"
2015-08-05 00:32:57 +00:00
}
if r.IOPS < other.IOPS {
return false, "iops exhausted"
2015-08-05 00:32:57 +00:00
}
return true, ""
2015-08-05 00:32:57 +00:00
}
2015-08-05 00:41:02 +00:00
// Add adds the resources of the delta to this, potentially
// returning an error if not possible.
func (r *Resources) Add(delta *Resources) error {
if delta == nil {
return nil
}
r.CPU += delta.CPU
r.MemoryMB += delta.MemoryMB
r.DiskMB += delta.DiskMB
r.IOPS += delta.IOPS
for _, n := range delta.Networks {
// Find the matching interface by IP or CIDR
idx := r.NetIndex(n)
2015-08-05 00:41:02 +00:00
if idx == -1 {
r.Networks = append(r.Networks, n.Copy())
} else {
r.Networks[idx].Add(n)
2015-08-05 00:41:02 +00:00
}
}
return nil
}
2015-09-15 00:43:42 +00:00
func (r *Resources) GoString() string {
return fmt.Sprintf("*%#v", *r)
}
type Port struct {
Label string
Value int `mapstructure:"static"`
}
2015-09-24 06:56:25 +00:00
// NetworkResource is used to represent available network
// resources
2015-06-07 18:18:59 +00:00
type NetworkResource struct {
Device string // Name of the device
CIDR string // CIDR block of addresses
IP string // IP address
MBits int // Throughput
ReservedPorts []Port // Reserved ports
DynamicPorts []Port // Dynamically assigned ports
}
2015-09-13 21:30:45 +00:00
// Copy returns a deep copy of the network resource
func (n *NetworkResource) Copy() *NetworkResource {
newR := new(NetworkResource)
*newR = *n
if n.ReservedPorts != nil {
newR.ReservedPorts = make([]Port, len(n.ReservedPorts))
copy(newR.ReservedPorts, n.ReservedPorts)
}
if n.DynamicPorts != nil {
newR.DynamicPorts = make([]Port, len(n.DynamicPorts))
copy(newR.DynamicPorts, n.DynamicPorts)
}
2015-09-13 21:30:45 +00:00
return newR
}
2015-08-05 00:41:02 +00:00
// Add adds the resources of the delta to this, potentially
// returning an error if not possible.
func (n *NetworkResource) Add(delta *NetworkResource) {
if len(delta.ReservedPorts) > 0 {
n.ReservedPorts = append(n.ReservedPorts, delta.ReservedPorts...)
}
n.MBits += delta.MBits
2015-09-22 20:33:16 +00:00
n.DynamicPorts = append(n.DynamicPorts, delta.DynamicPorts...)
2015-08-05 00:41:02 +00:00
}
2015-09-15 01:27:37 +00:00
func (n *NetworkResource) GoString() string {
return fmt.Sprintf("*%#v", *n)
}
func (n *NetworkResource) MapLabelToValues(port_map map[string]int) map[string]int {
labelValues := make(map[string]int)
ports := append(n.ReservedPorts, n.DynamicPorts...)
for _, port := range ports {
if mapping, ok := port_map[port.Label]; ok {
labelValues[port.Label] = mapping
} else {
labelValues[port.Label] = port.Value
}
}
return labelValues
}
const (
// JobTypeNomad is reserved for internal system tasks and is
// always handled by the CoreScheduler.
JobTypeCore = "_core"
JobTypeService = "service"
JobTypeBatch = "batch"
2015-10-14 23:43:06 +00:00
JobTypeSystem = "system"
)
const (
JobStatusPending = "pending" // Pending means the job is waiting on scheduling
JobStatusRunning = "running" // Running means the entire job is running
JobStatusComplete = "complete" // Complete means there was a clean termination
JobStatusDead = "dead" // Dead means there was abnormal termination
)
const (
// JobMinPriority is the minimum allowed priority
JobMinPriority = 1
// JobDefaultPriority is the default priority if not
// not specified.
JobDefaultPriority = 50
// JobMaxPriority is the maximum allowed priority
JobMaxPriority = 100
2015-08-15 22:15:00 +00:00
// Ensure CoreJobPriority is higher than any user
// specified job so that it gets priority. This is important
// for the system to remain healthy.
CoreJobPriority = JobMaxPriority * 2
)
// Job is the scope of a scheduling request to Nomad. It is the largest
// scoped object, and is a named collection of task groups. Each task group
// is further composed of tasks. A task group (TG) is the unit of scheduling
// however.
type Job struct {
2015-09-15 17:46:10 +00:00
// Region is the Nomad region that handles scheduling this job
Region string
// ID is a unique identifier for the job per region. It can be
// specified hierarchically like LineOfBiz/OrgName/Team/Project
ID string
// Name is the logical name of the job used to refer to it. This is unique
// per region, but not unique globally.
Name string
// Type is used to control various behaviors about the job. Most jobs
// are service jobs, meaning they are expected to be long lived.
// Some jobs are batch oriented meaning they run and then terminate.
// This can be extended in the future to support custom schedulers.
Type string
// Priority is used to control scheduling importance and if this job
// can preempt other jobs.
Priority int
// AllAtOnce is used to control if incremental scheduling of task groups
// is allowed or if we must do a gang scheduling of the entire job. This
// can slow down larger jobs if resources are not available.
2015-09-15 00:43:42 +00:00
AllAtOnce bool `mapstructure:"all_at_once"`
2015-08-13 21:02:39 +00:00
// Datacenters contains all the datacenters this job is allowed to span
Datacenters []string
// Constraints can be specified at a job level and apply to
// all the task groups and tasks.
Constraints []*Constraint
// TaskGroups are the collections of task groups that this job needs
// to run. Each task group is an atomic unit of scheduling and placement.
TaskGroups []*TaskGroup
2015-09-07 22:08:50 +00:00
// Update is used to control the update strategy
Update UpdateStrategy
// Meta is used to associate arbitrary metadata with this
// job. This is opaque to Nomad.
Meta map[string]string
// Job status
Status string
2015-07-04 00:50:54 +00:00
2015-08-15 20:08:06 +00:00
// StatusDescription is meant to provide more human useful information
StatusDescription string
2015-07-04 00:50:54 +00:00
// Raft Indexes
CreateIndex uint64
ModifyIndex uint64
}
2015-09-15 17:46:10 +00:00
// Validate is used to sanity check a job input
func (j *Job) Validate() error {
var mErr multierror.Error
if j.Region == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing job region"))
}
if j.ID == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing job ID"))
} else if strings.Contains(j.ID, " ") {
mErr.Errors = append(mErr.Errors, errors.New("Job ID contains a space"))
2015-09-15 17:46:10 +00:00
}
if j.Name == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing job name"))
}
if j.Type == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing job type"))
}
if j.Priority < JobMinPriority || j.Priority > JobMaxPriority {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Job priority must be between [%d, %d]", JobMinPriority, JobMaxPriority))
}
if len(j.Datacenters) == 0 {
2015-09-25 19:27:31 +00:00
mErr.Errors = append(mErr.Errors, errors.New("Missing job datacenters"))
2015-09-15 17:46:10 +00:00
}
if len(j.TaskGroups) == 0 {
mErr.Errors = append(mErr.Errors, errors.New("Missing job task groups"))
}
for idx, constr := range j.Constraints {
if err := constr.Validate(); err != nil {
outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err)
mErr.Errors = append(mErr.Errors, outer)
}
}
2015-09-15 17:46:10 +00:00
// Check for duplicate task groups
taskGroups := make(map[string]int)
for idx, tg := range j.TaskGroups {
if tg.Name == "" {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d missing name", idx+1))
} else if existing, ok := taskGroups[tg.Name]; ok {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d redefines '%s' from group %d", idx+1, tg.Name, existing+1))
} else {
taskGroups[tg.Name] = idx
}
if j.Type == "system" && tg.Count != 1 {
mErr.Errors = append(mErr.Errors,
fmt.Errorf("Job task group %d has count %d. Only count of 1 is supported with system scheduler",
idx+1, tg.Count))
}
2015-09-15 18:23:03 +00:00
}
2015-09-15 17:46:10 +00:00
2015-09-15 18:23:03 +00:00
// Validate the task group
for idx, tg := range j.TaskGroups {
2015-09-15 17:46:10 +00:00
if err := tg.Validate(); err != nil {
2015-09-21 00:08:57 +00:00
outer := fmt.Errorf("Task group %d validation failed: %s", idx+1, err)
mErr.Errors = append(mErr.Errors, outer)
2015-09-15 17:46:10 +00:00
}
}
return mErr.ErrorOrNil()
}
2015-08-23 23:49:48 +00:00
// LookupTaskGroup finds a task group by name
2015-08-30 02:14:47 +00:00
func (j *Job) LookupTaskGroup(name string) *TaskGroup {
2015-08-23 23:49:48 +00:00
for _, tg := range j.TaskGroups {
if tg.Name == name {
return tg
}
}
return nil
}
2015-09-06 22:34:28 +00:00
// Stub is used to return a summary of the job
func (j *Job) Stub() *JobListStub {
return &JobListStub{
ID: j.ID,
Name: j.Name,
Type: j.Type,
Priority: j.Priority,
Status: j.Status,
StatusDescription: j.StatusDescription,
CreateIndex: j.CreateIndex,
ModifyIndex: j.ModifyIndex,
}
}
// JobListStub is used to return a subset of job information
// for the job list
type JobListStub struct {
ID string
Name string
Type string
Priority int
Status string
StatusDescription string
CreateIndex uint64
ModifyIndex uint64
}
2015-09-07 22:08:50 +00:00
// UpdateStrategy is used to modify how updates are done
type UpdateStrategy struct {
// Stagger is the amount of time between the updates
Stagger time.Duration
// MaxParallel is how many updates can be done in parallel
2015-09-20 21:18:21 +00:00
MaxParallel int `mapstructure:"max_parallel"`
2015-09-07 22:08:50 +00:00
}
// Rolling returns if a rolling strategy should be used
func (u *UpdateStrategy) Rolling() bool {
return u.Stagger > 0 && u.MaxParallel > 0
}
// RestartPolicy influences how Nomad restarts Tasks when they
// crash or fail.
type RestartPolicy struct {
Attempts int
Interval time.Duration
Delay time.Duration
}
func (r *RestartPolicy) Validate() error {
if r.Interval == 0 {
return nil
}
if time.Duration(r.Attempts)*r.Delay > r.Interval {
return fmt.Errorf("Nomad can't restart the TaskGroup %v times in an interval of %v with a delay of %v", r.Attempts, r.Interval, r.Delay)
}
return nil
}
func NewRestartPolicy(jobType string) *RestartPolicy {
switch jobType {
2015-11-06 20:38:25 +00:00
case JobTypeService, JobTypeSystem:
rp := defaultServiceJobRestartPolicy
return &rp
case JobTypeBatch:
2015-11-03 21:54:29 +00:00
rp := defaultBatchJobRestartPolicy
return &rp
}
return nil
}
// TaskGroup is an atomic unit of placement. Each task group belongs to
// a job and may contain any number of tasks. A task group support running
// in many replicas using the same configuration..
type TaskGroup struct {
// Name of the task group
Name string
// Count is the number of replicas of this task group that should
// be scheduled.
Count int
// Constraints can be specified at a task group level and apply to
// all the tasks contained.
Constraints []*Constraint
//RestartPolicy of a TaskGroup
RestartPolicy *RestartPolicy
// Tasks are the collection of tasks that this task group needs to run
Tasks []*Task
// Meta is used to associate arbitrary metadata with this
// task group. This is opaque to Nomad.
Meta map[string]string
}
2015-09-15 17:46:10 +00:00
// Validate is used to sanity check a task group
func (tg *TaskGroup) Validate() error {
var mErr multierror.Error
if tg.Name == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing task group name"))
}
2015-09-15 18:23:03 +00:00
if tg.Count <= 0 {
mErr.Errors = append(mErr.Errors, errors.New("Task group count must be positive"))
2015-09-15 17:46:10 +00:00
}
if len(tg.Tasks) == 0 {
mErr.Errors = append(mErr.Errors, errors.New("Missing tasks for task group"))
}
for idx, constr := range tg.Constraints {
if err := constr.Validate(); err != nil {
outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err)
mErr.Errors = append(mErr.Errors, outer)
}
}
2015-09-15 17:46:10 +00:00
if tg.RestartPolicy != nil {
if err := tg.RestartPolicy.Validate(); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
} else {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Task Group %v should have a restart policy", tg.Name))
}
2015-09-15 17:46:10 +00:00
// Check for duplicate tasks
tasks := make(map[string]int)
for idx, task := range tg.Tasks {
if task.Name == "" {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d missing name", idx+1))
} else if existing, ok := tasks[task.Name]; ok {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d redefines '%s' from task %d", idx+1, task.Name, existing+1))
} else {
tasks[task.Name] = idx
}
2015-09-15 18:23:03 +00:00
}
2015-09-15 17:46:10 +00:00
2015-09-15 18:23:03 +00:00
// Validate the tasks
for idx, task := range tg.Tasks {
2015-09-15 17:46:10 +00:00
if err := task.Validate(); err != nil {
2015-09-21 00:08:57 +00:00
outer := fmt.Errorf("Task %d validation failed: %s", idx+1, err)
mErr.Errors = append(mErr.Errors, outer)
2015-09-15 17:46:10 +00:00
}
}
return mErr.ErrorOrNil()
}
2015-09-07 19:23:34 +00:00
// LookupTask finds a task by name
func (tg *TaskGroup) LookupTask(name string) *Task {
for _, t := range tg.Tasks {
if t.Name == name {
return t
}
}
return nil
}
2015-09-15 00:43:42 +00:00
func (tg *TaskGroup) GoString() string {
return fmt.Sprintf("*%#v", *tg)
}
2015-11-17 21:36:59 +00:00
const (
ServiceCheckHTTP = "http"
ServiceCheckTCP = "tcp"
ServiceCheckDocker = "docker"
ServiceCheckScript = "script"
)
// The ServiceCheck data model represents the consul health check that
// Nomad registers for a Task
type ServiceCheck struct {
Id string // Id of the check, must be unique and it is autogenrated
Name string // Name of the check, defaults to id
Type string // Type of the check - tcp, http, docker and script
Script string // Script to invoke for script check
2015-11-18 21:02:25 +00:00
Path string // path of the health check url for http type check
2015-11-17 22:25:23 +00:00
Protocol string // Protocol to use if check is http, defaults to http
Interval time.Duration // Interval of the check
Timeout time.Duration // Timeout of the response from the check before consul fails the check
}
2015-11-17 21:36:59 +00:00
func (sc *ServiceCheck) Validate() error {
t := strings.ToLower(sc.Type)
2015-11-18 21:02:25 +00:00
if t != ServiceCheckTCP && t != ServiceCheckHTTP {
return fmt.Errorf("Check with name %v has invalid check type: %s ", sc.Name, sc.Type)
}
if sc.Type == ServiceCheckHTTP && sc.Path == "" {
2015-11-17 22:25:23 +00:00
return fmt.Errorf("http checks needs the Http path information.")
}
if sc.Type == ServiceCheckScript && sc.Script == "" {
return fmt.Errorf("Script checks need the script to invoke")
}
2015-11-17 21:36:59 +00:00
return nil
}
2015-11-21 20:34:01 +00:00
func (sc *ServiceCheck) Hash() string {
h := sha1.New()
io.WriteString(h, sc.Name)
io.WriteString(h, sc.Type)
io.WriteString(h, sc.Script)
io.WriteString(h, sc.Path)
io.WriteString(h, sc.Path)
io.WriteString(h, sc.Protocol)
io.WriteString(h, sc.Interval.String())
io.WriteString(h, sc.Timeout.String())
return fmt.Sprintf("%x", h.Sum(nil))
}
// The Service model represents a Consul service defintion
type Service struct {
2015-11-17 22:21:14 +00:00
Id string // Id of the service, this needs to be unique on a local machine
Name string // Name of the service, defaults to id
Tags []string // List of tags for the service
PortLabel string `mapstructure:"port"` // port for the service
Checks []ServiceCheck // List of checks associated with the service
}
2015-11-17 21:36:59 +00:00
func (s *Service) Validate() error {
var mErr multierror.Error
for _, c := range s.Checks {
if err := c.Validate(); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
}
return mErr.ErrorOrNil()
}
// Task is a single process typically that is executed as part of a task group.
type Task struct {
// Name of the task
Name string
// Driver is used to control which driver is used
Driver string
// Config is provided to the driver to initialize
Config map[string]interface{}
// Map of environment variables to be used by the driver
Env map[string]string
// List of service definitions exposed by the Task
Services []*Service
// Constraints can be specified at a task level and apply only to
// the particular task.
Constraints []*Constraint
// Resources is the resources needed by this task
Resources *Resources
// Meta is used to associate arbitrary metadata with this
// task. This is opaque to Nomad.
Meta map[string]string
}
2015-09-15 00:43:42 +00:00
func (t *Task) GoString() string {
return fmt.Sprintf("*%#v", *t)
}
2015-11-12 23:28:22 +00:00
// Set of possible states for a task.
const (
TaskStatePending = "pending" // The task is waiting to be run.
TaskStateRunning = "running" // The task is currently running.
TaskStateDead = "dead" // Terminal state of task.
)
// TaskState tracks the current state of a task and events that caused state
// transistions.
type TaskState struct {
// The current state of the task.
State string
// Series of task events that transistion the state of the task.
Events []*TaskEvent
}
const (
// A Driver failure indicates that the task could not be started due to a
// failure in the driver.
2015-11-14 22:13:32 +00:00
TaskDriverFailure = "Driver Failure"
2015-11-12 23:28:22 +00:00
// Task Started signals that the task was started and its timestamp can be
// used to determine the running length of the task.
2015-11-14 22:13:32 +00:00
TaskStarted = "Started"
2015-11-12 23:28:22 +00:00
// Task terminated indicates that the task was started and exited.
2015-11-14 22:13:32 +00:00
TaskTerminated = "Terminated"
2015-11-12 23:28:22 +00:00
// Task Killed indicates a user has killed the task.
2015-11-14 22:13:32 +00:00
TaskKilled = "Killed"
2015-11-12 23:28:22 +00:00
)
// TaskEvent is an event that effects the state of a task and contains meta-data
// appropriate to the events type.
type TaskEvent struct {
2015-11-14 22:13:32 +00:00
Type string
2015-11-12 23:28:22 +00:00
Time int64 // Unix Nanosecond timestamp
// Driver Failure fields.
DriverError string // A driver error occured while starting the task.
2015-11-12 23:28:22 +00:00
// Task Terminated Fields.
ExitCode int // The exit code of the task.
Signal int // The signal that terminated the task.
Message string // A possible message explaining the termination of the task.
// Task Killed Fields.
KillError string // Error killing the task.
}
2015-11-14 22:13:32 +00:00
func NewTaskEvent(event string) *TaskEvent {
return &TaskEvent{
Type: event,
Time: time.Now().UnixNano(),
}
}
func (e *TaskEvent) SetDriverError(err error) *TaskEvent {
if err != nil {
e.DriverError = err.Error()
}
return e
}
func (e *TaskEvent) SetExitCode(c int) *TaskEvent {
e.ExitCode = c
return e
}
func (e *TaskEvent) SetSignal(s int) *TaskEvent {
e.Signal = s
return e
}
func (e *TaskEvent) SetExitMessage(err error) *TaskEvent {
if err != nil {
e.Message = err.Error()
}
return e
}
func (e *TaskEvent) SetKillError(err error) *TaskEvent {
if err != nil {
e.KillError = err.Error()
}
return e
2015-11-12 23:28:22 +00:00
}
2015-09-15 17:46:10 +00:00
// Validate is used to sanity check a task group
func (t *Task) Validate() error {
var mErr multierror.Error
if t.Name == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing task name"))
}
if t.Driver == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing task driver"))
}
if t.Resources == nil {
mErr.Errors = append(mErr.Errors, errors.New("Missing task resources"))
}
for idx, constr := range t.Constraints {
if err := constr.Validate(); err != nil {
outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err)
mErr.Errors = append(mErr.Errors, outer)
}
}
2015-11-17 21:36:59 +00:00
for _, service := range t.Services {
if err := service.Validate(); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
}
2015-09-15 17:46:10 +00:00
return mErr.ErrorOrNil()
}
const (
ConstraintDistinctHosts = "distinct_hosts"
ConstraintRegex = "regexp"
ConstraintVersion = "version"
)
// Constraints are used to restrict placement options.
type Constraint struct {
LTarget string // Left-hand target
RTarget string // Right-hand target
Operand string // Constraint operand (<=, <, =, !=, >, >=), contains, near
2015-06-07 18:18:59 +00:00
}
2015-08-14 04:46:33 +00:00
func (c *Constraint) String() string {
return fmt.Sprintf("%s %s %s", c.LTarget, c.Operand, c.RTarget)
}
func (c *Constraint) Validate() error {
var mErr multierror.Error
if c.Operand == "" {
mErr.Errors = append(mErr.Errors, errors.New("Missing constraint operand"))
}
// Perform additional validation based on operand
switch c.Operand {
case ConstraintRegex:
if _, err := regexp.Compile(c.RTarget); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Regular expression failed to compile: %v", err))
}
case ConstraintVersion:
if _, err := version.NewConstraint(c.RTarget); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("Version constraint is invalid: %v", err))
}
}
return mErr.ErrorOrNil()
}
2015-07-04 00:11:53 +00:00
const (
AllocDesiredStatusRun = "run" // Allocation should run
AllocDesiredStatusStop = "stop" // Allocation should stop
AllocDesiredStatusEvict = "evict" // Allocation should stop, and was evicted
AllocDesiredStatusFailed = "failed" // Allocation failed to be done
)
const (
AllocClientStatusPending = "pending"
AllocClientStatusRunning = "running"
AllocClientStatusDead = "dead"
AllocClientStatusFailed = "failed"
2015-07-04 00:11:53 +00:00
)
// Allocation is used to allocate the placement of a task group to a node.
type Allocation struct {
// ID of the allocation (UUID)
ID string
2015-08-15 20:08:06 +00:00
// ID of the evaluation that generated this allocation
EvalID string
2015-08-11 23:34:06 +00:00
// Name is a logical name of the allocation.
Name string
2015-07-04 00:11:53 +00:00
// NodeID is the node this is being placed on
NodeID string
// Job is the parent job of the task group being allocated.
// This is copied at allocation time to avoid issues if the job
// definition is updated.
JobID string
Job *Job
2015-07-04 00:11:53 +00:00
// TaskGroup is the name of the task group that should be run
TaskGroup string
2015-09-12 23:22:18 +00:00
// Resources is the total set of resources allocated as part
2015-07-04 00:11:53 +00:00
// of this allocation of the task group.
Resources *Resources
2015-09-12 23:22:18 +00:00
// TaskResources is the set of resources allocated to each
// task. These should sum to the total Resources.
TaskResources map[string]*Resources
// Metrics associated with this allocation
Metrics *AllocMetric
// Desired Status of the allocation on the client
DesiredStatus string
2015-07-04 00:50:54 +00:00
// DesiredStatusDescription is meant to provide more human useful information
DesiredDescription string
// Status of the allocation on the client
ClientStatus string
// ClientStatusDescription is meant to provide more human useful information
2015-08-25 23:26:34 +00:00
ClientDescription string
2015-08-15 20:08:06 +00:00
2015-11-12 23:28:22 +00:00
// TaskStates stores the state of each task,
TaskStates map[string]*TaskState
2015-07-04 00:50:54 +00:00
// Raft Indexes
CreateIndex uint64
ModifyIndex uint64
2015-07-04 00:11:53 +00:00
}
// TerminalStatus returns if the desired status is terminal and
// will no longer transition. This is not based on the current client status.
2015-08-15 23:07:22 +00:00
func (a *Allocation) TerminalStatus() bool {
switch a.DesiredStatus {
case AllocDesiredStatusStop, AllocDesiredStatusEvict, AllocDesiredStatusFailed:
2015-08-15 23:07:22 +00:00
return true
default:
return false
}
}
2015-09-06 22:34:28 +00:00
// Stub returns a list stub for the allocation
func (a *Allocation) Stub() *AllocListStub {
return &AllocListStub{
ID: a.ID,
EvalID: a.EvalID,
Name: a.Name,
NodeID: a.NodeID,
JobID: a.JobID,
TaskGroup: a.TaskGroup,
DesiredStatus: a.DesiredStatus,
DesiredDescription: a.DesiredDescription,
ClientStatus: a.ClientStatus,
ClientDescription: a.ClientDescription,
2015-11-12 23:28:22 +00:00
TaskStates: a.TaskStates,
2015-09-06 22:34:28 +00:00
CreateIndex: a.CreateIndex,
ModifyIndex: a.ModifyIndex,
}
}
// AllocListStub is used to return a subset of alloc information
type AllocListStub struct {
ID string
EvalID string
Name string
NodeID string
JobID string
TaskGroup string
DesiredStatus string
DesiredDescription string
ClientStatus string
ClientDescription string
2015-11-12 23:28:22 +00:00
TaskStates map[string]*TaskState
2015-09-06 22:34:28 +00:00
CreateIndex uint64
ModifyIndex uint64
}
// AllocMetric is used to track various metrics while attempting
// to make an allocation. These are used to debug a job, or to better
// understand the pressure within the system.
type AllocMetric struct {
// NodesEvaluated is the number of nodes that were evaluated
NodesEvaluated int
// NodesFiltered is the number of nodes filtered due to a constraint
NodesFiltered int
// ClassFiltered is the number of nodes filtered by class
ClassFiltered map[string]int
// ConstraintFiltered is the number of failures caused by constraint
ConstraintFiltered map[string]int
2015-09-24 06:56:25 +00:00
// NodesExhausted is the number of nodes skipped due to being
// exhausted of at least one resource
NodesExhausted int
// ClassExhausted is the number of nodes exhausted by class
ClassExhausted map[string]int
2015-09-23 00:37:33 +00:00
// DimensionExhausted provides the count by dimension or reason
DimensionExhausted map[string]int
// Scores is the scores of the final few nodes remaining
// for placement. The top score is typically selected.
2015-08-14 04:46:33 +00:00
Scores map[string]float64
// AllocationTime is a measure of how long the allocation
// attempt took. This can affect performance and SLAs.
AllocationTime time.Duration
// CoalescedFailures indicates the number of other
// allocations that were coalesced into this failed allocation.
// This is to prevent creating many failed allocations for a
// single task group.
CoalescedFailures int
}
2015-08-14 04:46:33 +00:00
func (a *AllocMetric) EvaluateNode() {
a.NodesEvaluated += 1
}
func (a *AllocMetric) FilterNode(node *Node, constraint string) {
a.NodesFiltered += 1
if node != nil && node.NodeClass != "" {
if a.ClassFiltered == nil {
a.ClassFiltered = make(map[string]int)
}
a.ClassFiltered[node.NodeClass] += 1
}
if constraint != "" {
if a.ConstraintFiltered == nil {
a.ConstraintFiltered = make(map[string]int)
}
a.ConstraintFiltered[constraint] += 1
}
}
func (a *AllocMetric) ExhaustedNode(node *Node, dimension string) {
2015-08-14 04:46:33 +00:00
a.NodesExhausted += 1
if node != nil && node.NodeClass != "" {
if a.ClassExhausted == nil {
a.ClassExhausted = make(map[string]int)
}
a.ClassExhausted[node.NodeClass] += 1
}
if dimension != "" {
2015-09-23 00:37:33 +00:00
if a.DimensionExhausted == nil {
a.DimensionExhausted = make(map[string]int)
}
2015-09-23 00:37:33 +00:00
a.DimensionExhausted[dimension] += 1
}
2015-08-14 04:46:33 +00:00
}
2015-08-16 16:57:30 +00:00
func (a *AllocMetric) ScoreNode(node *Node, name string, score float64) {
2015-08-14 04:46:33 +00:00
if a.Scores == nil {
a.Scores = make(map[string]float64)
}
2015-08-16 16:57:30 +00:00
key := fmt.Sprintf("%s.%s", node.ID, name)
a.Scores[key] = score
2015-08-14 04:46:33 +00:00
}
2015-07-23 22:27:13 +00:00
const (
EvalStatusPending = "pending"
EvalStatusComplete = "complete"
EvalStatusFailed = "failed"
2015-07-23 22:27:13 +00:00
)
const (
EvalTriggerJobRegister = "job-register"
EvalTriggerJobDeregister = "job-deregister"
EvalTriggerNodeUpdate = "node-update"
2015-08-15 22:15:00 +00:00
EvalTriggerScheduled = "scheduled"
2015-09-07 22:08:50 +00:00
EvalTriggerRollingUpdate = "rolling-update"
2015-08-15 22:15:00 +00:00
)
const (
2015-09-07 18:01:29 +00:00
// CoreJobEvalGC is used for the garbage collection of evaluations
2015-09-24 06:56:25 +00:00
// and allocations. We periodically scan evaluations in a terminal state,
2015-09-07 18:01:29 +00:00
// in which all the corresponding allocations are also terminal. We
// delete these out of the system to bound the state.
2015-08-15 22:15:00 +00:00
CoreJobEvalGC = "eval-gc"
2015-09-07 18:01:29 +00:00
// CoreJobNodeGC is used for the garbage collection of failed nodes.
// We periodically scan nodes in a terminal state, and if they have no
// corresponding allocations we delete these out of the system.
CoreJobNodeGC = "node-gc"
)
2015-07-23 22:27:13 +00:00
// Evaluation is used anytime we need to apply business logic as a result
// of a change to our desired state (job specification) or the emergent state
// (registered nodes). When the inputs change, we need to "evaluate" them,
// potentially taking action (allocation of work) or doing nothing if the state
// of the world does not require it.
type Evaluation struct {
// ID is a randonly generated UUID used for this evaluation. This
// is assigned upon the creation of the evaluation.
ID string
2015-07-24 00:31:08 +00:00
// Priority is used to control scheduling importance and if this job
// can preempt other jobs.
Priority int
// Type is used to control which schedulers are available to handle
// this evaluation.
Type string
// TriggeredBy is used to give some insight into why this Eval
// was created. (Job change, node failure, alloc failure, etc).
TriggeredBy string
2015-09-24 06:56:25 +00:00
// JobID is the job this evaluation is scoped to. Evaluations cannot
2015-08-06 00:55:15 +00:00
// be run in parallel for a given JobID, so we serialize on this.
JobID string
// JobModifyIndex is the modify index of the job at the time
// the evaluation was created
JobModifyIndex uint64
// NodeID is the node that was affected triggering the evaluation.
NodeID string
// NodeModifyIndex is the modify index of the node at the time
// the evaluation was created
NodeModifyIndex uint64
2015-07-23 22:27:13 +00:00
// Status of the evaluation
Status string
2015-08-15 20:08:06 +00:00
// StatusDescription is meant to provide more human useful information
StatusDescription string
// Wait is a minimum wait time for running the eval. This is used to
// support a rolling upgrade.
Wait time.Duration
// NextEval is the evaluation ID for the eval created to do a followup.
// This is used to support rolling upgrades, where we need a chain of evaluations.
NextEval string
// PreviousEval is the evaluation ID for the eval creating this one to do a followup.
// This is used to support rolling upgrades, where we need a chain of evaluations.
PreviousEval string
2015-07-23 22:27:13 +00:00
// Raft Indexes
CreateIndex uint64
ModifyIndex uint64
}
2015-08-15 23:07:22 +00:00
// TerminalStatus returns if the current status is terminal and
// will no longer transition.
func (e *Evaluation) TerminalStatus() bool {
switch e.Status {
case EvalStatusComplete, EvalStatusFailed:
return true
default:
return false
}
}
2015-08-14 00:11:20 +00:00
func (e *Evaluation) GoString() string {
return fmt.Sprintf("<Eval '%s' JobID: '%s'>", e.ID, e.JobID)
}
func (e *Evaluation) Copy() *Evaluation {
ne := new(Evaluation)
*ne = *e
return ne
}
2015-08-06 18:28:55 +00:00
// ShouldEnqueue checks if a given evaluation should be enqueued
func (e *Evaluation) ShouldEnqueue() bool {
switch e.Status {
case EvalStatusPending:
return true
case EvalStatusComplete, EvalStatusFailed:
2015-08-06 18:28:55 +00:00
return false
default:
panic(fmt.Sprintf("unhandled evaluation (%s) status %s", e.ID, e.Status))
}
}
2015-08-11 23:34:06 +00:00
// MakePlan is used to make a plan from the given evaluation
// for a given Job
func (e *Evaluation) MakePlan(j *Job) *Plan {
p := &Plan{
EvalID: e.ID,
2015-08-13 23:29:28 +00:00
Priority: e.Priority,
NodeUpdate: make(map[string][]*Allocation),
2015-08-11 23:34:06 +00:00
NodeAllocation: make(map[string][]*Allocation),
}
2015-08-13 23:29:28 +00:00
if j != nil {
p.AllAtOnce = j.AllAtOnce
}
2015-08-11 23:34:06 +00:00
return p
}
2015-09-07 22:08:50 +00:00
// NextRollingEval creates an evaluation to followup this eval for rolling updates
func (e *Evaluation) NextRollingEval(wait time.Duration) *Evaluation {
return &Evaluation{
ID: GenerateUUID(),
Priority: e.Priority,
Type: e.Type,
TriggeredBy: EvalTriggerRollingUpdate,
JobID: e.JobID,
JobModifyIndex: e.JobModifyIndex,
Status: EvalStatusPending,
Wait: wait,
PreviousEval: e.ID,
}
}
2015-07-27 21:59:16 +00:00
// Plan is used to submit a commit plan for task allocations. These
// are submitted to the leader which verifies that resources have
// not been overcommitted before admiting the plan.
type Plan struct {
// EvalID is the evaluation ID this plan is associated with
EvalID string
// EvalToken is used to prevent a split-brain processing of
// an evaluation. There should only be a single scheduler running
// an Eval at a time, but this could be violated after a leadership
// transition. This unique token is used to reject plans that are
// being submitted from a different leader.
EvalToken string
2015-07-27 21:59:16 +00:00
// Priority is the priority of the upstream job
Priority int
// AllAtOnce is used to control if incremental scheduling of task groups
// is allowed or if we must do a gang scheduling of the entire job.
// If this is false, a plan may be partially applied. Otherwise, the
// entire plan must be able to make progress.
AllAtOnce bool
// NodeUpdate contains all the allocations for each node. For each node,
// this is a list of the allocations to update to either stop or evict.
NodeUpdate map[string][]*Allocation
// NodeAllocation contains all the allocations for each node.
// The evicts must be considered prior to the allocations.
NodeAllocation map[string][]*Allocation
// FailedAllocs are allocations that could not be made,
// but are persisted so that the user can use the feedback
// to determine the cause.
FailedAllocs []*Allocation
2015-07-27 21:59:16 +00:00
}
2015-08-26 00:06:06 +00:00
func (p *Plan) AppendUpdate(alloc *Allocation, status, desc string) {
newAlloc := new(Allocation)
*newAlloc = *alloc
newAlloc.DesiredStatus = status
newAlloc.DesiredDescription = desc
2015-08-13 21:02:39 +00:00
node := alloc.NodeID
existing := p.NodeUpdate[node]
2015-08-26 00:06:06 +00:00
p.NodeUpdate[node] = append(existing, newAlloc)
2015-08-13 21:02:39 +00:00
}
func (p *Plan) PopUpdate(alloc *Allocation) {
existing := p.NodeUpdate[alloc.NodeID]
n := len(existing)
if n > 0 && existing[n-1].ID == alloc.ID {
existing = existing[:n-1]
if len(existing) > 0 {
p.NodeUpdate[alloc.NodeID] = existing
} else {
delete(p.NodeUpdate, alloc.NodeID)
}
}
}
2015-08-13 21:02:39 +00:00
func (p *Plan) AppendAlloc(alloc *Allocation) {
node := alloc.NodeID
existing := p.NodeAllocation[node]
p.NodeAllocation[node] = append(existing, alloc)
}
func (p *Plan) AppendFailed(alloc *Allocation) {
p.FailedAllocs = append(p.FailedAllocs, alloc)
}
2015-08-14 01:16:32 +00:00
// IsNoOp checks if this plan would do nothing
func (p *Plan) IsNoOp() bool {
return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && len(p.FailedAllocs) == 0
2015-08-14 01:16:32 +00:00
}
2015-07-27 22:31:49 +00:00
// PlanResult is the result of a plan submitted to the leader.
2015-07-27 21:59:16 +00:00
type PlanResult struct {
// NodeUpdate contains all the updates that were committed.
NodeUpdate map[string][]*Allocation
// NodeAllocation contains all the allocations that were committed.
NodeAllocation map[string][]*Allocation
// FailedAllocs are allocations that could not be made,
// but are persisted so that the user can use the feedback
// to determine the cause.
FailedAllocs []*Allocation
// RefreshIndex is the index the worker should refresh state up to.
// This allows all evictions and allocations to be materialized.
// If any allocations were rejected due to stale data (node state,
// over committed) this can be used to force a worker refresh.
2015-07-28 23:36:15 +00:00
RefreshIndex uint64
// AllocIndex is the Raft index in which the evictions and
// allocations took place. This is used for the write index.
2015-07-27 22:31:49 +00:00
AllocIndex uint64
2015-07-27 21:59:16 +00:00
}
// IsNoOp checks if this plan result would do nothing
func (p *PlanResult) IsNoOp() bool {
return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && len(p.FailedAllocs) == 0
}
2015-08-13 22:17:24 +00:00
// FullCommit is used to check if all the allocations in a plan
// were committed as part of the result. Returns if there was
// a match, and the number of expected and actual allocations.
func (p *PlanResult) FullCommit(plan *Plan) (bool, int, int) {
expected := 0
actual := 0
for name, allocList := range plan.NodeAllocation {
didAlloc, _ := p.NodeAllocation[name]
expected += len(allocList)
actual += len(didAlloc)
}
return actual == expected, expected, actual
}
2015-06-05 22:21:17 +00:00
// msgpackHandle is a shared handle for encoding/decoding of structs
var MsgpackHandle = func() *codec.MsgpackHandle {
h := &codec.MsgpackHandle{RawToString: true}
// Sets the default type for decoding a map into a nil interface{}.
// This is necessary in particular because we store the driver configs as a
// nil interface{}.
h.MapType = reflect.TypeOf(map[string]interface{}(nil))
return h
}()
2015-06-05 22:21:17 +00:00
// Decode is used to decode a MsgPack encoded object
func Decode(buf []byte, out interface{}) error {
return codec.NewDecoder(bytes.NewReader(buf), MsgpackHandle).Decode(out)
2015-06-05 22:21:17 +00:00
}
// Encode is used to encode a MsgPack object with type prefix
func Encode(t MessageType, msg interface{}) ([]byte, error) {
var buf bytes.Buffer
buf.WriteByte(uint8(t))
err := codec.NewEncoder(&buf, MsgpackHandle).Encode(msg)
2015-06-05 22:21:17 +00:00
return buf.Bytes(), err
}