open-nomad/nomad/structs/structs.go

332 lines
8.9 KiB
Go
Raw Normal View History

2015-06-01 15:49:10 +00:00
package structs
2015-06-05 22:21:17 +00:00
import (
"bytes"
2015-06-05 22:41:03 +00:00
"fmt"
"time"
2015-06-05 22:21:17 +00:00
"github.com/hashicorp/go-msgpack/codec"
)
2015-06-05 22:41:03 +00:00
var (
ErrNoLeader = fmt.Errorf("No cluster leader")
ErrNoRegionPath = fmt.Errorf("No path to region")
)
2015-06-01 15:49:10 +00:00
type MessageType uint8
const (
RegisterRequestType MessageType = iota
)
const (
// IgnoreUnknownTypeFlag is set along with a MessageType
// to indicate that the message type can be safely ignored
// if it is not recognized. This is for future proofing, so
// that new commands can be added in a way that won't cause
// old servers to crash when the FSM attempts to process them.
IgnoreUnknownTypeFlag MessageType = 128
)
2015-06-05 22:21:17 +00:00
2015-06-05 22:41:03 +00:00
// RPCInfo is used to describe common information about query
type RPCInfo interface {
RequestRegion() string
IsRead() bool
AllowStaleRead() bool
}
// QueryOptions is used to specify various flags for read queries
type QueryOptions struct {
// The target region for this query
Region string
2015-06-07 18:18:59 +00:00
// If set, wait until query exceeds given index. Must be provided
// with MaxQueryTime.
MinQueryIndex uint64
// Provided with MinQueryIndex to wait for change.
MaxQueryTime time.Duration
2015-06-05 22:41:03 +00:00
// If set, any follower can service the request. Results
// may be arbitrarily stale.
AllowStale bool
}
func (q QueryOptions) RequestRegion() string {
return q.Region
}
// QueryOption only applies to reads, so always true
func (q QueryOptions) IsRead() bool {
return true
}
func (q QueryOptions) AllowStaleRead() bool {
return q.AllowStale
}
type WriteRequest struct {
// The target region for this write
2015-06-05 22:41:03 +00:00
Region string
}
func (w WriteRequest) RequestRegion() string {
// The target region for this request
return w.Region
}
// WriteRequest only applies to writes, always false
func (w WriteRequest) IsRead() bool {
return false
}
func (w WriteRequest) AllowStaleRead() bool {
return false
}
// QueryMeta allows a query response to include potentially
// useful metadata about a query
type QueryMeta struct {
// This is the index associated with the read
Index uint64
// If AllowStale is used, this is time elapsed since
// last contact between the follower and leader. This
// can be used to gauge staleness.
LastContact time.Duration
// Used to indicate if there is a known leader node
KnownLeader bool
}
// WriteMeta allows a write response to includ e potentially
// useful metadata about the write
type WriteMeta struct {
// This is the index associated with the write
Index uint64
}
2015-06-07 18:18:59 +00:00
// RegisterRequest is used for Client.Register endpoint
// to register a node as being a schedulable entity.
type RegisterRequest struct {
Node *Node
WriteRequest
}
// RegisterResponse is used to respond to a register request
type RegisterResponse struct {
WriteMeta
}
const (
NodeStatusInit = "initializing"
NodeStatusReady = "ready"
NodeStatusMaint = "maintenance"
NodeStatusDown = "down"
)
// Node is a representation of a schedulable client node
type Node struct {
// ID is a unique identifier for the node. It can be constructed
// by doing a concatenation of the Name and Datacenter as a simple
// approach. Alternatively a UUID may be used.
ID string
2015-06-07 18:18:59 +00:00
// Datacenter for this node
Datacenter string
2015-06-07 19:14:41 +00:00
// Node name
Name string
2015-06-07 18:18:59 +00:00
// Attributes is an arbitrary set of key/value
// data that can be used for constraints. Examples
// include "os=linux", "arch=386", "driver.docker=1",
// "docker.runtime=1.8.3"
2015-06-07 18:18:59 +00:00
Attributes map[string]interface{}
// Resources is the available resources on the client.
// For example 'cpu=2' 'memory=2048'
Resouces *Resources
// Reserved is the set of resources that are reserved,
// and should be subtracted from the total resources for
// the purposes of scheduling. This may be provide certain
// high-watermark tolerances or because of external schedulers
// consuming resources.
Reserved *Resources
// Allocated is the set of resources that have been allocated
// as part of scheduling. They should also be excluded for the
// purposes of additional scheduling allocations.
Allocated *Resources
2015-06-07 18:18:59 +00:00
// Links are used to 'link' this client to external
// systems. For example 'consul=foo.dc1' 'aws=i-83212'
// 'ami=ami-123'
Links map[string]interface{}
// Meta is used to associate arbitrary metadata with this
// client. This is opaque to Nomad.
Meta map[string]string
// Status of this node
Status string
2015-06-07 18:18:59 +00:00
}
// Resources is used to define the resources available
// on a client
type Resources struct {
CPU float64
MemoryMB int
DiskMB int
IOPS int
Networks []*NetworkResource
Other map[string]interface{}
2015-06-07 18:18:59 +00:00
}
// NetworkResource is used to represesent available network
// resources
2015-06-07 18:18:59 +00:00
type NetworkResource struct {
Public bool // Is this a public address?
CIDR string // CIDR block of addresses
ReservedPorts []int // Reserved ports
MBits int // Throughput
}
const (
JobTypeService = "service"
JobTypeBatch = "batch"
)
const (
JobStatusPending = "pending" // Pending means the job is waiting on scheduling
JobStatusRunning = "running" // Running means the entire job is running
JobStatusComplete = "complete" // Complete means there was a clean termination
JobStatusDead = "dead" // Dead means there was abnormal termination
)
// Job is the scope of a scheduling request to Nomad. It is the largest
// scoped object, and is a named collection of task groups. Each task group
// is further composed of tasks. A task group (TG) is the unit of scheduling
// however.
type Job struct {
// Name is the logical name of the job used to refer to it. This is unique
// per region, but not unique globally.
Name string
// Type is used to control various behaviors about the job. Most jobs
// are service jobs, meaning they are expected to be long lived.
// Some jobs are batch oriented meaning they run and then terminate.
// This can be extended in the future to support custom schedulers.
Type string
// Priority is used to control scheduling importance and if this job
// can preempt other jobs.
Priority int
// AllAtOnce is used to control if incremental scheduling of task groups
// is allowed or if we must do a gang scheduling of the entire job. This
// can slow down larger jobs if resources are not available.
AllAtOnce bool
// Constraints can be specified at a job level and apply to
// all the task groups and tasks.
Constraints []*Constraint
// TaskGroups are the collections of task groups that this job needs
// to run. Each task group is an atomic unit of scheduling and placement.
TaskGroups []*TaskGroup
// Meta is used to associate arbitrary metadata with this
// job. This is opaque to Nomad.
Meta map[string]string
// Job status
Status string
}
// TaskGroup is an atomic unit of placement. Each task group belongs to
// a job and may contain any number of tasks. A task group support running
// in many replicas using the same configuration..
type TaskGroup struct {
// Name of the parent job
Job string
// Name of the task group
Name string
// Count is the number of replicas of this task group that should
// be scheduled.
Count int
// Constraints can be specified at a task group level and apply to
// all the tasks contained.
Constraints []*Constraint
// Tasks are the collection of tasks that this task group needs to run
Tasks []*Task
// Meta is used to associate arbitrary metadata with this
// task group. This is opaque to Nomad.
Meta map[string]string
// Task group status
Status string
}
// Task is a single process typically that is executed as part of a task group.
type Task struct {
// Name of the parent job
Job string
// Name of the partent task group
TaskGroup string
// Name of the task
Name string
// Driver is used to control which driver is used
Driver string
// Config is provided to the driver to initialize
Config map[string]string
// Constraints can be specified at a task level and apply only to
// the particular task.
Constraints []*Constraint
// Resources is the resources needed by this task
Resources *Resources
// Meta is used to associate arbitrary metadata with this
// task. This is opaque to Nomad.
Meta map[string]string
}
// Constraints are used to restrict placement options in the case of
// a hard constraint, and used to prefer a placement in the case of
// a soft constraint.
type Constraint struct {
Hard bool // Hard or soft constraint
LTarget string // Left-hand target
RTarget string // Right-hand target
Operand string // Constraint operand (<=, <, =, !=, >, >=), contains, near
Weight int // Soft constraints can vary the weight
2015-06-07 18:18:59 +00:00
}
2015-06-05 22:21:17 +00:00
// msgpackHandle is a shared handle for encoding/decoding of structs
var msgpackHandle = &codec.MsgpackHandle{}
// Decode is used to decode a MsgPack encoded object
func Decode(buf []byte, out interface{}) error {
return codec.NewDecoder(bytes.NewReader(buf), msgpackHandle).Decode(out)
}
// Encode is used to encode a MsgPack object with type prefix
func Encode(t MessageType, msg interface{}) ([]byte, error) {
var buf bytes.Buffer
buf.WriteByte(uint8(t))
err := codec.NewEncoder(&buf, msgpackHandle).Encode(msg)
return buf.Bytes(), err
}