open-nomad/scheduler/service_sched.go

356 lines
10 KiB
Go
Raw Normal View History

package scheduler
import (
"fmt"
"log"
2015-08-13 21:03:03 +00:00
"math"
2015-08-13 21:03:03 +00:00
"github.com/hashicorp/nomad/nomad/mock"
"github.com/hashicorp/nomad/nomad/structs"
)
2015-08-13 22:17:24 +00:00
const (
// maxScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts.
maxScheduleAttempts = 5
)
// ServiceScheduler is used for 'service' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads.
type ServiceScheduler struct {
logger *log.Logger
state State
planner Planner
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &ServiceScheduler{
logger: logger,
state: state,
planner: planner,
}
return s
}
// Process is used to handle a single evaluation
func (s *ServiceScheduler) Process(eval *structs.Evaluation) error {
// Use the evaluation trigger reason to determine what we need to do
switch eval.TriggeredBy {
2015-08-13 23:48:34 +00:00
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate:
return s.computeJobAllocs(eval)
case structs.EvalTriggerJobDeregister:
2015-08-13 23:25:59 +00:00
return s.evictJobAllocs(eval)
default:
return fmt.Errorf("service scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
}
}
2015-08-13 23:48:34 +00:00
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *ServiceScheduler) computeJobAllocs(eval *structs.Evaluation) error {
2015-08-13 22:17:24 +00:00
attempts := 0
START:
// Check the attempt count
if attempts == maxScheduleAttempts {
return fmt.Errorf("maximum schedule attempts reached (%d)", attempts)
}
attempts += 1
2015-08-11 23:41:48 +00:00
// Lookup the Job by ID
job, err := s.state.GetJobByID(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get job '%s': %v",
eval.JobID, err)
}
// If the job is missing, maybe a concurrent deregister
if job == nil {
s.logger.Printf("[DEBUG] sched: skipping eval %s, job %s not found",
eval.ID, eval.JobID)
return nil
}
// Materialize all the task groups
groups := materializeTaskGroups(job)
// If there is nothing required for this job, treat like a deregister
if len(groups) == 0 {
2015-08-13 23:25:59 +00:00
return s.evictJobAllocs(eval)
2015-08-11 23:41:48 +00:00
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
eval.JobID, err)
}
2015-08-13 23:48:34 +00:00
// Determine the tainted nodes containing job allocs
tainted, err := s.taintedNodes(allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
eval.JobID, err)
}
2015-08-13 22:57:49 +00:00
2015-08-11 23:41:48 +00:00
// Index the existing allocations
indexed := indexAllocs(allocs)
// Diff the required and existing allocations
2015-08-13 23:48:34 +00:00
place, update, migrate, evict, ignore := diffAllocs(job, tainted, groups, indexed)
s.logger.Printf("[DEBUG] sched: eval %s job %s needs %d placements, %d updates, %d migrations, %d evictions, %d ignored allocs",
eval.ID, eval.JobID, len(place), len(update), len(migrate), len(evict), len(ignore))
2015-08-11 23:41:48 +00:00
// Fast-pass if nothing to do
2015-08-13 23:48:34 +00:00
if len(place) == 0 && len(update) == 0 && len(evict) == 0 && len(migrate) == 0 {
2015-08-11 23:41:48 +00:00
return nil
}
// Start a plan for this evaluation
plan := eval.MakePlan(job)
// Add all the evicts
addEvictsToPlan(plan, evict, indexed)
// For simplicity, we treat all updates as an evict + place.
// XXX: This should be done with rolling in-place updates instead.
addEvictsToPlan(plan, update, indexed)
place = append(place, update...)
2015-08-13 22:17:24 +00:00
// Get the iteration stack
stack, err := s.iterStack(job, plan)
if err != nil {
return fmt.Errorf("failed to create iter stack: %v", err)
}
2015-08-11 23:41:48 +00:00
// Attempt to place all the allocations
2015-08-13 22:17:24 +00:00
if err := s.planAllocations(stack, job, plan, place, groups); err != nil {
return fmt.Errorf("failed to plan allocations: %v", err)
}
2015-08-11 23:41:48 +00:00
2015-08-13 22:17:24 +00:00
// Submit the plan
planResult, newState, err := s.planner.SubmitPlan(plan)
if err != nil {
return err
}
// If we got a state refresh, try again to ensure we
// are not missing any allocations
if newState != nil {
s.state = newState
stack.Context.SetState(newState)
goto START
}
// Try again if the plan was not fully committed
fullCommit, expected, actual := planResult.FullCommit(plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: eval %s job %s attempted %d placements, %d placed",
eval.ID, eval.JobID, expected, actual)
goto START
}
return nil
}
2015-08-13 23:48:34 +00:00
// taintedNodes is used to scan the allocations and then check if the
// underlying nodes are tainted, and should force a migration of the allocation.
func (s *ServiceScheduler) taintedNodes(allocs []*structs.Allocation) (map[string]bool, error) {
out := make(map[string]bool)
for _, alloc := range allocs {
if _, ok := out[alloc.NodeID]; ok {
continue
}
node, err := s.state.GetNodeByID(alloc.NodeID)
if err != nil {
return nil, err
}
out[alloc.NodeID] = structs.ShouldDrainNode(node.Status)
}
return out, nil
}
2015-08-13 22:17:24 +00:00
// IteratorStack is used to hold pointers to each of the
// iterators which are chained together to do selection.
// Half of the stack is used for feasibility checking, while
// the second half of the stack is used for ranking and selection.
2015-08-13 21:03:03 +00:00
type IteratorStack struct {
Context *EvalContext
BaseNodes []*structs.Node
Source *StaticIterator
JobConstraint *ConstraintIterator
TaskGroupDrivers *DriverIterator
TaskGroupConstraint *ConstraintIterator
RankSource *FeasibleRankIterator
BinPack *BinPackIterator
Limit *LimitIterator
MaxScore *MaxScoreIterator
}
2015-08-13 22:17:24 +00:00
// iterStack is used to get a set of base nodes and to
// initialize the entire stack of iterators.
2015-08-13 21:03:03 +00:00
func (s *ServiceScheduler) iterStack(job *structs.Job,
plan *structs.Plan) (*IteratorStack, error) {
// Create a new stack
stack := new(IteratorStack)
// Create an evaluation context
stack.Context = NewEvalContext(s.state, plan, s.logger)
// Get the base nodes
nodes, err := s.baseNodes(job)
if err != nil {
return nil, err
}
stack.BaseNodes = nodes
// Create the source iterator. We randomize the order we visit nodes
// to reduce collisions between schedulers and to do a basic load
// balancing across eligible nodes.
stack.Source = NewRandomIterator(stack.Context, stack.BaseNodes)
// Attach the job constraints.
stack.JobConstraint = NewConstraintIterator(stack.Context, stack.Source, job.Constraints)
// Create the task group filters, this must be filled in later
stack.TaskGroupDrivers = NewDriverIterator(stack.Context, stack.JobConstraint, nil)
stack.TaskGroupConstraint = NewConstraintIterator(stack.Context, stack.TaskGroupDrivers, nil)
// Upgrade from feasible to rank iterator
stack.RankSource = NewFeasibleRankIterator(stack.Context, stack.TaskGroupConstraint)
// Apply the bin packing, this depends on the resources needed by
// a particular task group.
2015-08-13 23:48:34 +00:00
stack.BinPack = NewBinPackIterator(stack.Context, stack.RankSource, nil, true, job.Priority)
2015-08-13 21:03:03 +00:00
// Apply a limit function. This is to avoid scanning *every* possible node.
// Instead we need to visit "enough". Using a log of the total number of
// nodes is a good restriction, with at least 2 as the floor
limit := 2
if n := len(nodes); n > 0 {
logLimit := int(math.Ceil(math.Log2(float64(n))))
if logLimit > limit {
limit = logLimit
}
}
stack.Limit = NewLimitIterator(stack.Context, stack.BinPack, limit)
// Select the node with the maximum score for placement
stack.MaxScore = NewMaxScoreIterator(stack.Context, stack.Limit)
return stack, nil
}
// baseNodes returns all the ready nodes in a datacenter that this
// job has specified is usable.
func (s *ServiceScheduler) baseNodes(job *structs.Job) ([]*structs.Node, error) {
var out []*structs.Node
for _, dc := range job.Datacenters {
iter, err := s.state.NodesByDatacenterStatus(dc, structs.NodeStatusReady)
if err != nil {
return nil, err
}
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Node))
}
}
return out, nil
}
2015-08-13 22:17:24 +00:00
func (s *ServiceScheduler) planAllocations(stack *IteratorStack, job *structs.Job, plan *structs.Plan,
2015-08-13 21:03:03 +00:00
place []allocNameID, groups map[string]*structs.TaskGroup) error {
// Attempt to place each missing allocation
for _, missing := range place {
taskGroup := groups[missing.Name]
// Collect the constraints, drivers and resources required by each
// sub-task to aggregate the TaskGroup totals
constr := make([]*structs.Constraint, 0, len(taskGroup.Constraints))
drivers := make(map[string]struct{})
size := new(structs.Resources)
constr = append(constr, taskGroup.Constraints...)
for _, task := range taskGroup.Tasks {
drivers[task.Driver] = struct{}{}
constr = append(constr, task.Constraints...)
size.Add(task.Resources)
}
2015-08-13 22:17:24 +00:00
// Update the parameters of iterators
stack.MaxScore.Reset()
2015-08-13 21:03:03 +00:00
stack.TaskGroupDrivers.SetDrivers(drivers)
stack.TaskGroupConstraint.SetConstraints(constr)
stack.BinPack.SetResources(size)
// Select the best fit
option := stack.MaxScore.Next()
if option == nil {
s.logger.Printf("[DEBUG] sched: failed to place alloc %s for job %s",
missing, job.ID)
continue
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: mock.GenerateUUID(),
Name: missing.Name,
NodeID: option.Node.ID,
JobID: job.ID,
Job: job,
Resources: size,
Metrics: nil,
Status: structs.AllocStatusPending,
}
plan.AppendAlloc(alloc)
}
return nil
2015-08-11 23:41:48 +00:00
}
2015-08-13 23:25:59 +00:00
// evictJobAllocs is used to evict all job allocations
func (s *ServiceScheduler) evictJobAllocs(eval *structs.Evaluation) error {
START:
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
eval.JobID, err)
}
// Nothing to do if there is no evictsion
2015-08-11 23:41:48 +00:00
s.logger.Printf("[DEBUG] sched: eval %s job %s needs %d evictions",
eval.ID, eval.JobID, len(allocs))
if len(allocs) == 0 {
return nil
}
// Create a plan to evict these
2015-08-13 23:29:28 +00:00
plan := eval.MakePlan(nil)
// Add each alloc to be evicted
for _, alloc := range allocs {
2015-08-13 21:03:03 +00:00
plan.AppendEvict(alloc)
}
// Submit the plan
_, newState, err := s.planner.SubmitPlan(plan)
if err != nil {
return err
}
// If we got a state refresh, try again to ensure we
// are not missing any allocations
if newState != nil {
s.state = newState
goto START
}
return nil
}