open-nomad/scheduler/service_sched.go

395 lines
11 KiB
Go
Raw Normal View History

package scheduler
import (
"fmt"
"log"
2015-08-13 21:03:03 +00:00
"math"
2015-08-13 21:03:03 +00:00
"github.com/hashicorp/nomad/nomad/mock"
"github.com/hashicorp/nomad/nomad/structs"
)
// ServiceScheduler is used for 'service' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attemping
// to make a high quality placement. This is the primary scheduler for
// most workloads.
type ServiceScheduler struct {
logger *log.Logger
state State
planner Planner
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
s := &ServiceScheduler{
logger: logger,
state: state,
planner: planner,
}
return s
}
// Process is used to handle a single evaluation
func (s *ServiceScheduler) Process(eval *structs.Evaluation) error {
// Use the evaluation trigger reason to determine what we need to do
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister:
return s.handleJobRegister(eval)
case structs.EvalTriggerJobDeregister:
return s.handleJobDeregister(eval)
case structs.EvalTriggerNodeUpdate:
return s.handleNodeUpdate(eval)
default:
return fmt.Errorf("service scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
}
}
// handleJobRegister is used to handle a job being registered or updated
func (s *ServiceScheduler) handleJobRegister(eval *structs.Evaluation) error {
2015-08-11 23:41:48 +00:00
// Lookup the Job by ID
job, err := s.state.GetJobByID(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get job '%s': %v",
eval.JobID, err)
}
// If the job is missing, maybe a concurrent deregister
if job == nil {
s.logger.Printf("[DEBUG] sched: skipping eval %s, job %s not found",
eval.ID, eval.JobID)
return nil
}
// Materialize all the task groups
groups := materializeTaskGroups(job)
// If there is nothing required for this job, treat like a deregister
if len(groups) == 0 {
return s.handleJobDeregister(eval)
}
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
eval.JobID, err)
}
// Index the existing allocations
indexed := indexAllocs(allocs)
// Diff the required and existing allocations
place, update, evict, ignore := diffAllocs(job, groups, indexed)
s.logger.Printf("[DEBUG] sched: eval %s job %s needs %d placements, %d updates, %d evictions, %d ignored allocs",
eval.ID, eval.JobID, len(place), len(update), len(evict), len(ignore))
// Fast-pass if nothing to do
if len(place) == 0 && len(update) == 0 && len(evict) == 0 {
return nil
}
// Start a plan for this evaluation
plan := eval.MakePlan(job)
// Add all the evicts
addEvictsToPlan(plan, evict, indexed)
// For simplicity, we treat all updates as an evict + place.
// XXX: This should be done with rolling in-place updates instead.
addEvictsToPlan(plan, update, indexed)
place = append(place, update...)
// Attempt to place all the allocations
2015-08-13 21:03:03 +00:00
s.planAllocations(job, plan, place, groups)
2015-08-11 23:41:48 +00:00
// TODO
return nil
}
2015-08-13 21:03:03 +00:00
type IteratorStack struct {
Context *EvalContext
BaseNodes []*structs.Node
Source *StaticIterator
JobConstraint *ConstraintIterator
TaskGroupDrivers *DriverIterator
TaskGroupConstraint *ConstraintIterator
RankSource *FeasibleRankIterator
BinPack *BinPackIterator
Limit *LimitIterator
MaxScore *MaxScoreIterator
}
func (s *ServiceScheduler) iterStack(job *structs.Job,
plan *structs.Plan) (*IteratorStack, error) {
// Create a new stack
stack := new(IteratorStack)
// Create an evaluation context
stack.Context = NewEvalContext(s.state, plan, s.logger)
// Get the base nodes
nodes, err := s.baseNodes(job)
if err != nil {
return nil, err
}
stack.BaseNodes = nodes
// Create the source iterator. We randomize the order we visit nodes
// to reduce collisions between schedulers and to do a basic load
// balancing across eligible nodes.
stack.Source = NewRandomIterator(stack.Context, stack.BaseNodes)
// Attach the job constraints.
stack.JobConstraint = NewConstraintIterator(stack.Context, stack.Source, job.Constraints)
// Create the task group filters, this must be filled in later
stack.TaskGroupDrivers = NewDriverIterator(stack.Context, stack.JobConstraint, nil)
stack.TaskGroupConstraint = NewConstraintIterator(stack.Context, stack.TaskGroupDrivers, nil)
// Upgrade from feasible to rank iterator
stack.RankSource = NewFeasibleRankIterator(stack.Context, stack.TaskGroupConstraint)
// Apply the bin packing, this depends on the resources needed by
// a particular task group.
// TODO: Support eviction in the future
stack.BinPack = NewBinPackIterator(stack.Context, stack.RankSource, nil, false, job.Priority)
// Apply a limit function. This is to avoid scanning *every* possible node.
// Instead we need to visit "enough". Using a log of the total number of
// nodes is a good restriction, with at least 2 as the floor
limit := 2
if n := len(nodes); n > 0 {
logLimit := int(math.Ceil(math.Log2(float64(n))))
if logLimit > limit {
limit = logLimit
}
}
stack.Limit = NewLimitIterator(stack.Context, stack.BinPack, limit)
// Select the node with the maximum score for placement
stack.MaxScore = NewMaxScoreIterator(stack.Context, stack.Limit)
return stack, nil
}
// baseNodes returns all the ready nodes in a datacenter that this
// job has specified is usable.
func (s *ServiceScheduler) baseNodes(job *structs.Job) ([]*structs.Node, error) {
var out []*structs.Node
for _, dc := range job.Datacenters {
iter, err := s.state.NodesByDatacenterStatus(dc, structs.NodeStatusReady)
if err != nil {
return nil, err
}
for {
raw := iter.Next()
if raw == nil {
break
}
out = append(out, raw.(*structs.Node))
}
}
return out, nil
}
func (s *ServiceScheduler) planAllocations(job *structs.Job, plan *structs.Plan,
place []allocNameID, groups map[string]*structs.TaskGroup) error {
// Get the iteration stack
stack, err := s.iterStack(job, plan)
if err != nil {
return err
}
// Attempt to place each missing allocation
for _, missing := range place {
taskGroup := groups[missing.Name]
// Collect the constraints, drivers and resources required by each
// sub-task to aggregate the TaskGroup totals
constr := make([]*structs.Constraint, 0, len(taskGroup.Constraints))
drivers := make(map[string]struct{})
size := new(structs.Resources)
constr = append(constr, taskGroup.Constraints...)
for _, task := range taskGroup.Tasks {
drivers[task.Driver] = struct{}{}
constr = append(constr, task.Constraints...)
size.Add(task.Resources)
}
// Reset the iterator stack
// stack.MaxScore.Reset()
// Update the parameters of the sub-iterators
stack.TaskGroupDrivers.SetDrivers(drivers)
stack.TaskGroupConstraint.SetConstraints(constr)
stack.BinPack.SetResources(size)
// Select the best fit
option := stack.MaxScore.Next()
if option == nil {
s.logger.Printf("[DEBUG] sched: failed to place alloc %s for job %s",
missing, job.ID)
continue
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: mock.GenerateUUID(),
Name: missing.Name,
NodeID: option.Node.ID,
JobID: job.ID,
Job: job,
Resources: size,
Metrics: nil,
Status: structs.AllocStatusPending,
}
plan.AppendAlloc(alloc)
}
return nil
2015-08-11 23:41:48 +00:00
}
// handleJobDeregister is used to handle a job being deregistered
func (s *ServiceScheduler) handleJobDeregister(eval *structs.Evaluation) error {
START:
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
eval.JobID, err)
}
// Nothing to do if there is no evictsion
2015-08-11 23:41:48 +00:00
s.logger.Printf("[DEBUG] sched: eval %s job %s needs %d evictions",
eval.ID, eval.JobID, len(allocs))
if len(allocs) == 0 {
return nil
}
// Create a plan to evict these
plan := &structs.Plan{
EvalID: eval.ID,
Priority: eval.Priority,
NodeEvict: make(map[string][]string),
}
// Add each alloc to be evicted
for _, alloc := range allocs {
2015-08-13 21:03:03 +00:00
plan.AppendEvict(alloc)
}
// Submit the plan
_, newState, err := s.planner.SubmitPlan(plan)
if err != nil {
return err
}
// If we got a state refresh, try again to ensure we
// are not missing any allocations
if newState != nil {
s.state = newState
goto START
}
return nil
}
2015-08-11 23:41:48 +00:00
// handleNodeUpdate is used to handle an update to a node status where
// there is an existing allocation for this job
func (s *ServiceScheduler) handleNodeUpdate(eval *structs.Evaluation) error {
// TODO
return nil
}
2015-08-11 23:41:48 +00:00
// materializeTaskGroups is used to materialize all the task groups
// a job requires. This is used to do the count expansion.
func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
out := make(map[string]*structs.TaskGroup)
for _, tg := range job.TaskGroups {
for i := 0; i < tg.Count; i++ {
name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i)
out[name] = tg
}
}
return out
}
// indexAllocs is used to index a list of allocations by name
func indexAllocs(allocs []*structs.Allocation) map[string][]*structs.Allocation {
out := make(map[string][]*structs.Allocation)
for _, alloc := range allocs {
name := alloc.Name
out[name] = append(out[name], alloc)
}
return out
}
// allocNameID is a tuple of the allocation name and ID
type allocNameID struct {
Name string
ID string
}
// diffAllocs is used to do a set difference between the target allocations
// and the existing allocations. This returns 4 sets of results, the list of
// named task groups that need to be placed (no existing allocation), the
// allocations that need to be updated (job definition is newer), the allocs
// that need to be evicted (no longer required), and those that should be
// ignored.
func diffAllocs(job *structs.Job,
required map[string]*structs.TaskGroup,
existing map[string][]*structs.Allocation) (place, update, evict, ignore []allocNameID) {
// Scan the existing updates
for name, existList := range existing {
for _, exist := range existList {
// Check for the definition in the required set
_, ok := required[name]
// If not required, we evict
if !ok {
evict = append(evict, allocNameID{name, exist.ID})
continue
}
// If the definition is updated we need to update
// XXX: This is an extremely conservative approach. We can check
// if the job definition has changed in a way that affects
// this allocation and potentially ignore it.
if job.ModifyIndex != exist.Job.ModifyIndex {
update = append(update, allocNameID{name, exist.ID})
continue
}
// Everything is up-to-date
ignore = append(ignore, allocNameID{name, exist.ID})
}
}
// Scan the required groups
for name := range required {
// Check for an existing allocation
_, ok := existing[name]
// Require a placement if no existing allocation. If there
// is an existing allocation, we would have checked for a potential
// update or ignore above.
if !ok {
place = append(place, allocNameID{name, ""})
}
}
return
}
// addEvictsToPlan is used to add all the evictions to the plan
func addEvictsToPlan(plan *structs.Plan,
evicts []allocNameID, indexed map[string][]*structs.Allocation) {
for _, evict := range evicts {
list := indexed[evict.Name]
for _, alloc := range list {
if alloc.ID != evict.ID {
continue
}
2015-08-13 21:03:03 +00:00
plan.AppendEvict(alloc)
2015-08-11 23:41:48 +00:00
}
}
}