open-nomad/scheduler/util.go

1140 lines
34 KiB
Go
Raw Normal View History

2015-08-13 23:25:59 +00:00
package scheduler
import (
"encoding/binary"
2015-08-13 23:25:59 +00:00
"fmt"
2015-09-07 18:23:38 +00:00
"math/rand"
"reflect"
2015-08-13 23:25:59 +00:00
2018-09-15 23:23:13 +00:00
log "github.com/hashicorp/go-hclog"
2017-02-08 04:31:23 +00:00
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper"
2015-08-13 23:25:59 +00:00
"github.com/hashicorp/nomad/nomad/structs"
)
2015-08-14 01:16:32 +00:00
// allocTuple is a tuple of the allocation name and potential alloc ID
type allocTuple struct {
Name string
TaskGroup *structs.TaskGroup
Alloc *structs.Allocation
2015-08-13 23:25:59 +00:00
}
// materializeTaskGroups is used to materialize all the task groups
// a job requires. This is used to do the count expansion.
func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup {
out := make(map[string]*structs.TaskGroup)
2017-04-19 17:54:03 +00:00
if job.Stopped() {
return out
2015-08-13 23:25:59 +00:00
}
2015-10-14 23:43:06 +00:00
for _, tg := range job.TaskGroups {
for i := 0; i < tg.Count; i++ {
name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i)
2015-10-14 23:43:06 +00:00
out[name] = tg
}
}
return out
}
2015-08-14 01:28:09 +00:00
// diffResult is used to return the sets that result from the diff
type diffResult struct {
place, update, migrate, stop, ignore, lost []allocTuple
2015-08-14 01:28:09 +00:00
}
func (d *diffResult) GoString() string {
return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d)",
len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost))
2015-08-14 01:28:09 +00:00
}
func (d *diffResult) Append(other *diffResult) {
d.place = append(d.place, other.place...)
d.update = append(d.update, other.update...)
d.migrate = append(d.migrate, other.migrate...)
d.stop = append(d.stop, other.stop...)
d.ignore = append(d.ignore, other.ignore...)
d.lost = append(d.lost, other.lost...)
}
// diffSystemAllocsForNode is used to do a set difference between the target allocations
// and the existing allocations for a particular node. This returns 6 sets of results,
// the list of named task groups that need to be placed (no existing allocation), the
// allocations that need to be updated (job definition is newer), allocs that
// need to be migrated (node is draining), the allocs that need to be evicted
// (no longer required), those that should be ignored and those that are lost
// that need to be replaced (running on a lost node).
func diffSystemAllocsForNode(
job *structs.Job, // job whose allocs are going to be diff-ed
nodeID string,
eligibleNodes map[string]*structs.Node,
notReadyNodes map[string]struct{}, // nodes that are not ready, e.g. draining
taintedNodes map[string]*structs.Node, // nodes which are down (by node id)
required map[string]*structs.TaskGroup, // set of allocations that must exist
allocs []*structs.Allocation, // non-terminal allocations that exist
terminal structs.TerminalByNodeByName, // latest terminal allocations (by node, id)
) *diffResult {
result := new(diffResult)
2015-08-14 01:18:32 +00:00
2015-08-13 23:25:59 +00:00
// Scan the existing updates
existing := make(map[string]struct{}) // set of alloc names
2015-08-14 01:20:55 +00:00
for _, exist := range allocs {
// Index the existing node
name := exist.Name
existing[name] = struct{}{}
2015-08-13 23:25:59 +00:00
2015-08-14 01:20:55 +00:00
// Check for the definition in the required set
tg, ok := required[name]
2015-08-13 23:25:59 +00:00
2015-08-26 00:06:06 +00:00
// If not required, we stop the alloc
2015-08-14 01:20:55 +00:00
if !ok {
2015-10-16 18:43:09 +00:00
result.stop = append(result.stop, allocTuple{
2015-08-14 01:20:55 +00:00
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// If we have been marked for migration and aren't terminal, migrate
if !exist.TerminalStatus() && exist.DesiredTransition.ShouldMigrate() {
result.migrate = append(result.migrate, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// If we are a sysbatch job and terminal, ignore (or stop?) the alloc
if job.Type == structs.JobTypeSysBatch && exist.TerminalStatus() {
result.ignore = append(result.ignore, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
// If we are on a tainted node, we must migrate if we are a service or
// if the batch allocation did not finish
if node, ok := taintedNodes[exist.NodeID]; ok {
2016-06-16 23:17:17 +00:00
// If the job is batch and finished successfully, the fact that the
// node is tainted does not mean it should be migrated or marked as
// lost as the work was already successfully finished. However for
// service/system jobs, tasks should never complete. The check of
// batch type, defends against client bugs.
if exist.Job.Type == structs.JobTypeBatch && exist.RanSuccessfully() {
goto IGNORE
}
if !exist.TerminalStatus() && (node == nil || node.TerminalStatus()) {
result.lost = append(result.lost, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
} else {
goto IGNORE
}
2015-08-14 01:20:55 +00:00
continue
}
2015-08-13 23:25:59 +00:00
// For an existing allocation, if the nodeID is no longer
// eligible, the diff should be ignored
if _, ok := notReadyNodes[nodeID]; ok {
goto IGNORE
}
// Existing allocations on nodes that are no longer targeted
// should be stopped
if _, ok := eligibleNodes[nodeID]; !ok {
result.stop = append(result.stop, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: exist,
})
continue
}
2015-08-14 01:20:55 +00:00
// If the definition is updated we need to update
2016-01-12 17:50:33 +00:00
if job.JobModifyIndex != exist.Job.JobModifyIndex {
2015-10-16 18:43:09 +00:00
result.update = append(result.update, allocTuple{
2015-08-14 01:16:32 +00:00
Name: name,
TaskGroup: tg,
Alloc: exist,
})
2015-08-14 01:20:55 +00:00
continue
2015-08-13 23:25:59 +00:00
}
2015-08-14 01:20:55 +00:00
// Everything is up-to-date
IGNORE:
2015-10-16 18:43:09 +00:00
result.ignore = append(result.ignore, allocTuple{
2015-08-14 01:20:55 +00:00
Name: name,
TaskGroup: tg,
Alloc: exist,
})
2015-08-13 23:25:59 +00:00
}
// Scan the required groups
2015-08-14 01:16:32 +00:00
for name, tg := range required {
2015-08-13 23:25:59 +00:00
// Check for an existing allocation
if _, ok := existing[name]; !ok {
// Check for a terminal sysbatch allocation, which should be not placed
// again unless the job has been updated.
if job.Type == structs.JobTypeSysBatch {
if alloc, termExists := terminal.Get(nodeID, name); termExists {
// the alloc is terminal, but now the job has been updated
if job.JobModifyIndex != alloc.Job.JobModifyIndex {
result.update = append(result.update, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: alloc,
})
} else {
// alloc is terminal and job unchanged, leave it alone
result.ignore = append(result.ignore, allocTuple{
Name: name,
TaskGroup: tg,
Alloc: alloc,
})
}
continue
}
}
// Require a placement if no existing allocation. If there
// is an existing allocation, we would have checked for a potential
// update or ignore above. Ignore placements for tainted or
// ineligible nodes
2015-08-13 23:25:59 +00:00
2020-01-30 18:37:59 +00:00
// Tainted and ineligible nodes for a non existing alloc
// should be filtered out and not count towards ignore or place
if _, tainted := taintedNodes[nodeID]; tainted {
continue
}
if _, eligible := eligibleNodes[nodeID]; !eligible {
continue
}
termOnNode, _ := terminal.Get(nodeID, name)
allocTuple := allocTuple{
2015-08-14 01:16:32 +00:00
Name: name,
TaskGroup: tg,
Alloc: termOnNode,
}
// If the new allocation isn't annotated with a previous allocation
// or if the previous allocation isn't from the same node then we
// annotate the allocTuple with a new Allocation
if allocTuple.Alloc == nil || allocTuple.Alloc.NodeID != nodeID {
allocTuple.Alloc = &structs.Allocation{NodeID: nodeID}
}
result.place = append(result.place, allocTuple)
2015-08-13 23:25:59 +00:00
}
}
2015-08-14 01:28:09 +00:00
return result
2015-08-13 23:25:59 +00:00
}
// diffSystemAllocs is like diffSystemAllocsForNode however, the allocations in the
// diffResult contain the specific nodeID they should be allocated on.
func diffSystemAllocs(
job *structs.Job, // jobs whose allocations are going to be diff-ed
readyNodes []*structs.Node, // list of nodes in the ready state
notReadyNodes map[string]struct{}, // list of nodes in DC but not ready, e.g. draining
taintedNodes map[string]*structs.Node, // nodes which are down or drain mode (by node id)
allocs []*structs.Allocation, // non-terminal allocations
terminal structs.TerminalByNodeByName, // latest terminal allocations (by node id)
) *diffResult {
// Build a mapping of nodes to all their allocs.
nodeAllocs := make(map[string][]*structs.Allocation, len(allocs))
for _, alloc := range allocs {
nodeAllocs[alloc.NodeID] = append(nodeAllocs[alloc.NodeID], alloc)
}
eligibleNodes := make(map[string]*structs.Node)
for _, node := range readyNodes {
if _, ok := nodeAllocs[node.ID]; !ok {
nodeAllocs[node.ID] = nil
}
eligibleNodes[node.ID] = node
}
// Create the required task groups.
required := materializeTaskGroups(job)
result := new(diffResult)
for nodeID, allocs := range nodeAllocs {
diff := diffSystemAllocsForNode(job, nodeID, eligibleNodes, notReadyNodes, taintedNodes, required, allocs, terminal)
result.Append(diff)
}
return result
}
// readyNodesInDCs returns all the ready nodes in the given datacenters and a
// mapping of each data center to the count of ready nodes.
func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]struct{}, map[string]int, error) {
2015-08-15 20:11:42 +00:00
// Index the DCs
dcMap := make(map[string]int, len(dcs))
2015-08-14 00:19:09 +00:00
for _, dc := range dcs {
dcMap[dc] = 0
2015-08-15 20:11:42 +00:00
}
// Scan the nodes
2017-02-08 04:31:23 +00:00
ws := memdb.NewWatchSet()
2015-08-15 20:11:42 +00:00
var out []*structs.Node
notReady := map[string]struct{}{}
2017-02-08 04:31:23 +00:00
iter, err := state.Nodes(ws)
2015-08-15 20:11:42 +00:00
if err != nil {
return nil, nil, nil, err
2015-08-15 20:11:42 +00:00
}
for {
raw := iter.Next()
if raw == nil {
break
2015-08-14 00:19:09 +00:00
}
2015-08-15 20:11:42 +00:00
// Filter on datacenter and status
node := raw.(*structs.Node)
if !node.Ready() {
notReady[node.ID] = struct{}{}
continue
}
2015-08-15 20:11:42 +00:00
if _, ok := dcMap[node.Datacenter]; !ok {
continue
2015-08-14 00:19:09 +00:00
}
2015-08-15 20:11:42 +00:00
out = append(out, node)
2017-09-26 22:26:33 +00:00
dcMap[node.Datacenter]++
2015-08-14 00:19:09 +00:00
}
return out, notReady, dcMap, nil
2015-08-14 00:19:09 +00:00
}
2015-08-14 00:40:23 +00:00
// retryMax is used to retry a callback until it returns success or
// a maximum number of attempts is reached. An optional reset function may be
// passed which is called after each failed iteration. If the reset function is
// set and returns true, the number of attempts is reset back to max.
func retryMax(max int, cb func() (bool, error), reset func() bool) error {
2015-08-14 00:40:23 +00:00
attempts := 0
for attempts < max {
done, err := cb()
if err != nil {
return err
}
if done {
return nil
}
// Check if we should reset the number attempts
if reset != nil && reset() {
attempts = 0
} else {
2017-09-26 22:26:33 +00:00
attempts++
}
2015-08-14 00:40:23 +00:00
}
return &SetStatusError{
Err: fmt.Errorf("maximum attempts reached (%d)", max),
EvalStatus: structs.EvalStatusFailed,
}
2015-08-14 00:40:23 +00:00
}
2015-08-14 00:51:31 +00:00
// progressMade checks to see if the plan result made allocations or updates.
// If the result is nil, false is returned.
func progressMade(result *structs.PlanResult) bool {
2016-02-22 18:38:04 +00:00
return result != nil && (len(result.NodeUpdate) != 0 ||
2017-07-06 16:55:39 +00:00
len(result.NodeAllocation) != 0 || result.Deployment != nil ||
len(result.DeploymentUpdates) != 0)
}
2015-08-14 00:51:31 +00:00
// taintedNodes is used to scan the allocations and then check if the
// underlying nodes are tainted, and should force a migration of the allocation.
// All the nodes returned in the map are tainted.
func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) {
out := make(map[string]*structs.Node)
2015-08-14 00:51:31 +00:00
for _, alloc := range allocs {
if _, ok := out[alloc.NodeID]; ok {
continue
}
2017-02-08 04:31:23 +00:00
ws := memdb.NewWatchSet()
node, err := state.NodeByID(ws, alloc.NodeID)
2015-08-14 00:51:31 +00:00
if err != nil {
return nil, err
}
2015-08-14 01:05:31 +00:00
// If the node does not exist, we should migrate
if node == nil {
out[alloc.NodeID] = nil
2015-08-14 01:05:31 +00:00
continue
}
if structs.ShouldDrainNode(node.Status) || node.DrainStrategy != nil {
out[alloc.NodeID] = node
}
2015-08-14 00:51:31 +00:00
}
return out, nil
}
2015-09-07 18:23:38 +00:00
// shuffleNodes randomizes the slice order with the Fisher-Yates
// algorithm. We seed the random source with the eval ID (which is
// random) to aid in postmortem debugging of specific evaluations and
// state snapshots.
func shuffleNodes(plan *structs.Plan, index uint64, nodes []*structs.Node) {
// use the last 4 bytes because those are the random bits
// if we have sortable IDs
buf := []byte(plan.EvalID)
seed := binary.BigEndian.Uint64(buf[len(buf)-8:])
// for retried plans the index is the plan result's RefreshIndex
// so that we don't retry with the exact same shuffle
seed ^= index
r := rand.New(rand.NewSource(int64(seed >> 2)))
2015-09-07 18:23:38 +00:00
n := len(nodes)
for i := n - 1; i > 0; i-- {
j := r.Intn(i + 1)
2015-09-07 18:23:38 +00:00
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// tasksUpdated does a diff between task groups to see if the
// tasks, their drivers, environment variables or config have updated. The
// inputs are the task group name to diff and two jobs to diff.
// taskUpdated and functions called within assume that the given
// taskGroup has already been checked to not be nil
func tasksUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
a := jobA.LookupTaskGroup(taskGroup)
b := jobB.LookupTaskGroup(taskGroup)
// If the number of tasks do not match, clearly there is an update
if len(a.Tasks) != len(b.Tasks) {
return true
}
// Check ephemeral disk
if !reflect.DeepEqual(a.EphemeralDisk, b.EphemeralDisk) {
return true
}
// Check that the network resources haven't changed
if networkUpdated(a.Networks, b.Networks) {
return true
}
// Check Affinities
if affinitiesUpdated(jobA, jobB, taskGroup) {
return true
}
// Check Spreads
if spreadsUpdated(jobA, jobB, taskGroup) {
return true
}
// Check consul namespace updated
if consulNamespaceUpdated(a, b) {
return true
}
// Check connect service(s) updated
if connectServiceUpdated(a.Services, b.Services) {
return true
}
// Check each task
for _, at := range a.Tasks {
bt := b.LookupTask(at.Name)
if bt == nil {
return true
}
if at.Driver != bt.Driver {
return true
}
if at.User != bt.User {
return true
}
if !reflect.DeepEqual(at.Config, bt.Config) {
return true
}
if !reflect.DeepEqual(at.Env, bt.Env) {
return true
}
if !reflect.DeepEqual(at.Artifacts, bt.Artifacts) {
return true
}
2016-09-21 18:29:50 +00:00
if !reflect.DeepEqual(at.Vault, bt.Vault) {
return true
}
if !reflect.DeepEqual(at.Templates, bt.Templates) {
return true
}
// Check the metadata
if !reflect.DeepEqual(
jobA.CombinedTaskMeta(taskGroup, at.Name),
jobB.CombinedTaskMeta(taskGroup, bt.Name)) {
return true
}
// Inspect the network to see if the dynamic ports are different
2019-05-08 15:09:35 +00:00
if networkUpdated(at.Resources.Networks, bt.Resources.Networks) {
return true
}
// Inspect the non-network resources
if ar, br := at.Resources, bt.Resources; ar.CPU != br.CPU {
return true
} else if ar.Cores != br.Cores {
return true
} else if ar.MemoryMB != br.MemoryMB {
return true
} else if ar.MemoryMaxMB != br.MemoryMaxMB {
return true
} else if !ar.Devices.Equals(&br.Devices) {
return true
}
}
return false
}
// consulNamespaceUpdated returns true if the Consul namespace in the task group
// has been changed.
//
// This is treated as a destructive update unlike ordinary Consul service configuration
// because Namespaces directly impact networking validity among Consul intentions.
// Forcing the task through a reschedule is a sure way of breaking no-longer valid
// network connections.
func consulNamespaceUpdated(tgA, tgB *structs.TaskGroup) bool {
// job.ConsulNamespace is pushed down to the TGs, just check those
return tgA.Consul.GetNamespace() != tgB.Consul.GetNamespace()
}
// connectServiceUpdated returns true if any services with a connect stanza have
// been changed in such a way that requires a destructive update.
//
// Ordinary services can be updated in-place by updating the service definition
// in Consul. Connect service changes mostly require destroying the task.
func connectServiceUpdated(servicesA, servicesB []*structs.Service) bool {
for _, serviceA := range servicesA {
if serviceA.Connect != nil {
for _, serviceB := range servicesB {
if serviceA.Name == serviceB.Name {
if connectUpdated(serviceA.Connect, serviceB.Connect) {
return true
}
// Part of the Connect plumbing is derived from port label,
// if that changes we need to destroy the task.
if serviceA.PortLabel != serviceB.PortLabel {
return true
}
break
}
}
}
}
return false
}
// connectUpdated returns true if the connect block has been updated in a manner
// that will require a destructive update.
//
// Fields that can be updated through consul-sync do not need a destructive
// update.
func connectUpdated(connectA, connectB *structs.ConsulConnect) bool {
if connectA == nil || connectB == nil {
return connectA != connectB
}
if connectA.Native != connectB.Native {
return true
}
if !connectA.Gateway.Equals(connectB.Gateway) {
return true
}
if !connectA.SidecarTask.Equals(connectB.SidecarTask) {
return true
}
// not everything in sidecar_service needs task destruction
if connectSidecarServiceUpdated(connectA.SidecarService, connectB.SidecarService) {
return true
}
return false
}
func connectSidecarServiceUpdated(ssA, ssB *structs.ConsulSidecarService) bool {
if ssA == nil || ssB == nil {
return ssA != ssB
}
if ssA.Port != ssB.Port {
return true
}
// sidecar_service.tags handled in-place (registration)
// sidecar_service.proxy handled in-place (registration + xDS)
return false
}
func networkUpdated(netA, netB []*structs.NetworkResource) bool {
if len(netA) != len(netB) {
return true
}
for idx := range netA {
an := netA[idx]
bn := netB[idx]
if an.Mode != bn.Mode {
return true
}
if an.MBits != bn.MBits {
return true
}
if an.Hostname != bn.Hostname {
return true
}
if !reflect.DeepEqual(an.DNS, bn.DNS) {
return true
}
aPorts, bPorts := networkPortMap(an), networkPortMap(bn)
if !reflect.DeepEqual(aPorts, bPorts) {
return true
}
}
return false
}
// networkPortMap takes a network resource and returns a AllocatedPorts.
// The value for dynamic ports is disregarded even if it is set. This
// makes this function suitable for comparing two network resources for changes.
func networkPortMap(n *structs.NetworkResource) structs.AllocatedPorts {
var m structs.AllocatedPorts
for _, p := range n.ReservedPorts {
m = append(m, structs.AllocatedPortMapping{
Label: p.Label,
Value: p.Value,
To: p.To,
HostIP: p.HostNetwork,
})
}
for _, p := range n.DynamicPorts {
m = append(m, structs.AllocatedPortMapping{
Label: p.Label,
Value: -1,
To: p.To,
HostIP: p.HostNetwork,
})
}
return m
}
func affinitiesUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
var aAffinities []*structs.Affinity
var bAffinities []*structs.Affinity
tgA := jobA.LookupTaskGroup(taskGroup)
tgB := jobB.LookupTaskGroup(taskGroup)
// Append jobA job and task group level affinities
aAffinities = append(aAffinities, jobA.Affinities...)
aAffinities = append(aAffinities, tgA.Affinities...)
// Append jobB job and task group level affinities
bAffinities = append(bAffinities, jobB.Affinities...)
bAffinities = append(bAffinities, tgB.Affinities...)
// append task affinities
for _, task := range tgA.Tasks {
aAffinities = append(aAffinities, task.Affinities...)
}
for _, task := range tgB.Tasks {
bAffinities = append(bAffinities, task.Affinities...)
}
// Check for equality
if len(aAffinities) != len(bAffinities) {
return true
}
return !reflect.DeepEqual(aAffinities, bAffinities)
}
func spreadsUpdated(jobA, jobB *structs.Job, taskGroup string) bool {
var aSpreads []*structs.Spread
var bSpreads []*structs.Spread
tgA := jobA.LookupTaskGroup(taskGroup)
tgB := jobB.LookupTaskGroup(taskGroup)
// append jobA and task group level spreads
aSpreads = append(aSpreads, jobA.Spreads...)
aSpreads = append(aSpreads, tgA.Spreads...)
// append jobB and task group level spreads
bSpreads = append(bSpreads, jobB.Spreads...)
bSpreads = append(bSpreads, tgB.Spreads...)
// Check for equality
if len(aSpreads) != len(bSpreads) {
return true
}
return !reflect.DeepEqual(aSpreads, bSpreads)
}
// setStatus is used to update the status of the evaluation
2018-09-15 23:23:13 +00:00
func setStatus(logger log.Logger, planner Planner,
eval, nextEval, spawnedBlocked *structs.Evaluation,
tgMetrics map[string]*structs.AllocMetric, status, desc string,
2017-07-06 00:13:45 +00:00
queuedAllocs map[string]int, deploymentID string) error {
2018-09-15 23:23:13 +00:00
logger.Debug("setting eval status", "status", status)
newEval := eval.Copy()
newEval.Status = status
newEval.StatusDescription = desc
2017-07-06 00:13:45 +00:00
newEval.DeploymentID = deploymentID
newEval.FailedTGAllocs = tgMetrics
if nextEval != nil {
newEval.NextEval = nextEval.ID
}
2016-05-19 20:09:52 +00:00
if spawnedBlocked != nil {
newEval.BlockedEval = spawnedBlocked.ID
2016-05-19 20:09:52 +00:00
}
if queuedAllocs != nil {
newEval.QueuedAllocations = queuedAllocs
}
return planner.UpdateEval(newEval)
}
// inplaceUpdate attempts to update allocations in-place where possible. It
// returns the allocs that couldn't be done inplace and then those that could.
func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job,
stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) {
// doInplace manipulates the updates map to make the current allocation
// an inplace update.
doInplace := func(cur, last, inplaceCount *int) {
updates[*cur], updates[*last-1] = updates[*last-1], updates[*cur]
*cur--
*last--
*inplaceCount++
}
2017-02-08 04:31:23 +00:00
ws := memdb.NewWatchSet()
n := len(updates)
inplaceCount := 0
for i := 0; i < n; i++ {
// Get the update
update := updates[i]
// Check if the task drivers or config has changed, requires
// a rolling upgrade since that cannot be done in-place.
existing := update.Alloc.Job
if tasksUpdated(job, existing, update.TaskGroup.Name) {
continue
}
// Terminal batch allocations are not filtered when they are completed
// successfully. We should avoid adding the allocation to the plan in
// the case that it is an in-place update to avoid both additional data
// in the plan and work for the clients.
if update.Alloc.TerminalStatus() {
doInplace(&i, &n, &inplaceCount)
continue
}
// Get the existing node
2017-02-08 04:31:23 +00:00
node, err := ctx.State().NodeByID(ws, update.Alloc.NodeID)
if err != nil {
2018-09-15 23:23:13 +00:00
ctx.Logger().Error("failed to get node", "node_id", update.Alloc.NodeID, "error", err)
continue
}
if node == nil {
continue
}
// The alloc is on a node that's now in an ineligible DC
if !helper.SliceStringContains(job.Datacenters, node.Datacenter) {
continue
}
// Set the existing node as the base set
stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation. This is done so that
2018-03-11 18:07:09 +00:00
// the current allocation is discounted when checking for feasibility.
// Otherwise we would be trying to fit the tasks current resources and
// updated resources. After select is called we can remove the evict.
ctx.Plan().AppendStoppedAlloc(update.Alloc, allocInPlace, "", "")
// Attempt to match the task group
option := stack.Select(update.TaskGroup,
&SelectOptions{AllocName: update.Alloc.Name})
// Pop the allocation
ctx.Plan().PopUpdate(update.Alloc)
// Skip if we could not do an in-place update
if option == nil {
continue
}
// Restore the network and device offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
2018-10-03 16:47:18 +00:00
var networks structs.Networks
var devices []*structs.AllocatedDeviceResource
2018-10-03 16:47:18 +00:00
if update.Alloc.AllocatedResources != nil {
if tr, ok := update.Alloc.AllocatedResources.Tasks[task]; ok {
networks = tr.Networks
devices = tr.Devices
2018-10-03 16:47:18 +00:00
}
} else if tr, ok := update.Alloc.TaskResources[task]; ok {
networks = tr.Networks
}
// Add the networks and devices back
2018-10-03 16:47:18 +00:00
resources.Networks = networks
resources.Devices = devices
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *update.Alloc
// Update the allocation
newAlloc.EvalID = eval.ID
2016-03-01 22:09:25 +00:00
newAlloc.Job = nil // Use the Job in the Plan
newAlloc.Resources = nil // Computed in Plan Apply
2018-10-02 20:36:04 +00:00
newAlloc.AllocatedResources = &structs.AllocatedResources{
2019-12-16 20:34:58 +00:00
Tasks: option.TaskResources,
TaskLifecycles: option.TaskLifecycles,
2018-10-02 20:36:04 +00:00
Shared: structs.AllocatedSharedResources{
DiskMB: int64(update.TaskGroup.EphemeralDisk.SizeMB),
Ports: update.Alloc.AllocatedResources.Shared.Ports,
Networks: update.Alloc.AllocatedResources.Shared.Networks.Copy(),
2018-10-02 20:36:04 +00:00
},
}
newAlloc.Metrics = ctx.Metrics()
2020-08-25 21:09:21 +00:00
ctx.Plan().AppendAlloc(newAlloc, nil)
// Remove this allocation from the slice
doInplace(&i, &n, &inplaceCount)
}
if len(updates) > 0 {
2018-09-15 23:23:13 +00:00
ctx.Logger().Debug("made in-place updates", "in-place", inplaceCount, "total_updates", len(updates))
}
return updates[:n], updates[n:]
}
// evictAndPlace is used to mark allocations for evicts and add them to the
// placement queue. evictAndPlace modifies both the diffResult and the
// limit. It returns true if the limit has been reached.
2015-10-16 18:43:09 +00:00
func evictAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool {
n := len(allocs)
for i := 0; i < n && i < *limit; i++ {
a := allocs[i]
ctx.Plan().AppendStoppedAlloc(a.Alloc, desc, "", "")
diff.place = append(diff.place, a)
}
if n <= *limit {
*limit -= n
return false
}
*limit = 0
return true
}
// tgConstrainTuple is used to store the total constraints of a task group.
type tgConstrainTuple struct {
// Holds the combined constraints of the task group and all it's sub-tasks.
constraints []*structs.Constraint
// The set of required drivers within the task group.
drivers map[string]struct{}
}
// taskGroupConstraints collects the constraints, drivers and resources required by each
// sub-task to aggregate the TaskGroup totals
func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple {
c := tgConstrainTuple{
constraints: make([]*structs.Constraint, 0, len(tg.Constraints)),
drivers: make(map[string]struct{}),
}
c.constraints = append(c.constraints, tg.Constraints...)
for _, task := range tg.Tasks {
c.drivers[task.Driver] = struct{}{}
c.constraints = append(c.constraints, task.Constraints...)
}
return c
}
// desiredUpdates takes the diffResult as well as the set of inplace and
// destructive updates and returns a map of task groups to their set of desired
// updates.
func desiredUpdates(diff *diffResult, inplaceUpdates,
destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates {
desiredTgs := make(map[string]*structs.DesiredUpdates)
for _, tuple := range diff.place {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Place++
}
for _, tuple := range diff.stop {
2016-05-13 18:53:11 +00:00
name := tuple.Alloc.TaskGroup
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Stop++
}
for _, tuple := range diff.ignore {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Ignore++
}
for _, tuple := range diff.migrate {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.Migrate++
}
for _, tuple := range inplaceUpdates {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.InPlaceUpdate++
}
for _, tuple := range destructiveUpdates {
name := tuple.TaskGroup.Name
des, ok := desiredTgs[name]
if !ok {
des = &structs.DesiredUpdates{}
desiredTgs[name] = des
}
des.DestructiveUpdate++
}
return desiredTgs
}
2016-07-22 21:53:49 +00:00
// adjustQueuedAllocations decrements the number of allocations pending per task
// group based on the number of allocations successfully placed
2018-09-15 23:23:13 +00:00
func adjustQueuedAllocations(logger log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) {
2017-07-18 00:18:12 +00:00
if result == nil {
return
}
for _, allocations := range result.NodeAllocation {
for _, allocation := range allocations {
// Ensure that the allocation is newly created. We check that
// the CreateIndex is equal to the ModifyIndex in order to check
// that the allocation was just created. We do not check that
// the CreateIndex is equal to the results AllocIndex because
// the allocations we get back have gone through the planner's
// optimistic snapshot and thus their indexes may not be
// correct, but they will be consistent.
if allocation.CreateIndex != allocation.ModifyIndex {
continue
}
2016-07-22 21:53:49 +00:00
2017-07-18 00:18:12 +00:00
if _, ok := queuedAllocs[allocation.TaskGroup]; ok {
2017-09-26 22:26:33 +00:00
queuedAllocs[allocation.TaskGroup]--
2017-07-18 00:18:12 +00:00
} else {
2018-09-15 23:23:13 +00:00
logger.Error("allocation placed but task group is not in list of unplaced allocations", "task_group", allocation.TaskGroup)
2016-07-22 21:53:49 +00:00
}
}
}
}
// updateNonTerminalAllocsToLost updates the allocations which are in pending/running state
// on tainted node to lost, but only for allocs already DesiredStatus stop or evict
func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) {
for _, alloc := range allocs {
node, ok := tainted[alloc.NodeID]
if !ok {
continue
}
// Only handle down nodes or nodes that are gone (node == nil)
if node != nil && node.Status != structs.NodeStatusDown {
continue
}
// If the alloc is already correctly marked lost, we're done
if (alloc.DesiredStatus == structs.AllocDesiredStatusStop ||
alloc.DesiredStatus == structs.AllocDesiredStatusEvict) &&
(alloc.ClientStatus == structs.AllocClientStatusRunning ||
alloc.ClientStatus == structs.AllocClientStatusPending) {
plan.AppendStoppedAlloc(alloc, allocLost, structs.AllocClientStatusLost, "")
}
}
}
// genericAllocUpdateFn is a factory for the scheduler to create an allocUpdateType
// function to be passed into the reconciler. The factory takes objects that
// exist only in the scheduler context and returns a function that can be used
// by the reconciler to make decisions about how to update an allocation. The
// factory allows the reconciler to be unaware of how to determine the type of
// update necessary and can minimize the set of objects it is exposed to.
func genericAllocUpdateFn(ctx Context, stack Stack, evalID string) allocUpdateType {
return func(existing *structs.Allocation, newJob *structs.Job, newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation) {
// Same index, so nothing to do
if existing.Job.JobModifyIndex == newJob.JobModifyIndex {
return true, false, nil
}
// Check if the task drivers or config has changed, requires
// a destructive upgrade since that cannot be done in-place.
if tasksUpdated(newJob, existing.Job, newTG.Name) {
return false, true, nil
}
// Terminal batch allocations are not filtered when they are completed
// successfully. We should avoid adding the allocation to the plan in
// the case that it is an in-place update to avoid both additional data
// in the plan and work for the clients.
if existing.TerminalStatus() {
return true, false, nil
}
// Get the existing node
ws := memdb.NewWatchSet()
node, err := ctx.State().NodeByID(ws, existing.NodeID)
if err != nil {
2018-09-15 23:23:13 +00:00
ctx.Logger().Error("failed to get node", "node_id", existing.NodeID, "error", err)
return true, false, nil
}
if node == nil {
return false, true, nil
}
// The alloc is on a node that's now in an ineligible DC
if !helper.SliceStringContains(newJob.Datacenters, node.Datacenter) {
return false, true, nil
}
// Set the existing node as the base set
stack.SetNodes([]*structs.Node{node})
// Stage an eviction of the current allocation. This is done so that
2018-03-11 18:07:09 +00:00
// the current allocation is discounted when checking for feasibility.
// Otherwise we would be trying to fit the tasks current resources and
// updated resources. After select is called we can remove the evict.
ctx.Plan().AppendStoppedAlloc(existing, allocInPlace, "", "")
// Attempt to match the task group
option := stack.Select(newTG, &SelectOptions{AllocName: existing.Name})
// Pop the allocation
ctx.Plan().PopUpdate(existing)
// Require destructive if we could not do an in-place update
if option == nil {
return false, true, nil
}
// Restore the network and device offers from the existing allocation.
// We do not allow network resources (reserved/dynamic ports)
// to be updated. This is guarded in taskUpdated, so we can
// safely restore those here.
for task, resources := range option.TaskResources {
2018-10-03 16:47:18 +00:00
var networks structs.Networks
var devices []*structs.AllocatedDeviceResource
2018-10-03 16:47:18 +00:00
if existing.AllocatedResources != nil {
if tr, ok := existing.AllocatedResources.Tasks[task]; ok {
networks = tr.Networks
devices = tr.Devices
2018-10-03 16:47:18 +00:00
}
} else if tr, ok := existing.TaskResources[task]; ok {
networks = tr.Networks
}
// Add the networks back
2018-10-03 16:47:18 +00:00
resources.Networks = networks
resources.Devices = devices
}
// Create a shallow copy
newAlloc := new(structs.Allocation)
*newAlloc = *existing
// Update the allocation
newAlloc.EvalID = evalID
newAlloc.Job = nil // Use the Job in the Plan
newAlloc.Resources = nil // Computed in Plan Apply
2018-10-02 20:36:04 +00:00
newAlloc.AllocatedResources = &structs.AllocatedResources{
2019-12-16 20:34:58 +00:00
Tasks: option.TaskResources,
TaskLifecycles: option.TaskLifecycles,
2019-06-18 17:12:23 +00:00
Shared: structs.AllocatedSharedResources{
DiskMB: int64(newTG.EphemeralDisk.SizeMB),
2019-06-18 17:12:23 +00:00
},
2018-10-02 20:36:04 +00:00
}
2019-06-18 04:55:43 +00:00
// Since this is an inplace update, we should copy network and port
// information from the original alloc. This is similar to how
// we copy network info for task level networks above.
//
// existing.AllocatedResources is nil on Allocations created by
// Nomad v0.8 or earlier.
if existing.AllocatedResources != nil {
newAlloc.AllocatedResources.Shared.Networks = existing.AllocatedResources.Shared.Networks
newAlloc.AllocatedResources.Shared.Ports = existing.AllocatedResources.Shared.Ports
}
// Use metrics from existing alloc for in place upgrade
// This is because if the inplace upgrade succeeded, any scoring metadata from
// when it first went through the scheduler should still be preserved. Using scoring
// metadata from the context would incorrectly replace it with metadata only from a single node that the
// allocation is already on.
newAlloc.Metrics = existing.Metrics.Copy()
return false, false, newAlloc
}
}