14 KiB
layout | page_title | sidebar_current | description |
---|---|---|---|
docs | ACL System | docs-internals-acl | Consul provides an optional Access Control List (ACL) system which can be used to control access to data and APIs. The ACL system is a Capability-based system that relies on tokens which can have fine grained rules applied to them. It is very similar to AWS IAM in many ways. |
ACL System
Consul provides an optional Access Control List (ACL) system which can be used to control access to data and APIs. The ACL is Capability-based, relying on tokens to which fine grained rules can be applied. It is very similar to AWS IAM in many ways.
Scope
When the ACL system was launched in Consul 0.4, it was only possible to specify policies for the KV store. In Consul 0.5, ACL policies were extended to service registrations. In Consul 0.6, ACL's were further extended to restrict service discovery mechanisms, user events, and encryption keyring operations.
ACL Design
The ACL system is designed to be easy to use, fast to enforce, and flexible to new policies, all while providing administrative insight.
Every token has an ID, name, type, and rule set. The ID is a randomly generated UUID, making it unfeasible to guess. The name is opaque to Consul and human readable. The type is either "client" (meaning the token cannot modify ACL rules) or "management" (meaning the token is allowed to perform all actions).
The token ID is passed along with each RPC request to the servers. Agents
can be configured with an acl_token
property
to provide a default token, but the token can also be specified by a client on a
per-request basis. ACLs were added in Consul 0.4, meaning
prior versions do not provide a token. This is handled by the special "anonymous"
token. If no token is provided, the rules associated with the anonymous token are
automatically applied: this allows policy to be enforced on legacy clients.
Enforcement is always done by the server nodes. All servers must be configured
to provide an acl_datacenter
which
enables ACL enforcement but also specifies the authoritative datacenter. Consul does not
replicate data cross-WAN and instead relies on RPC forwarding
to support Multi-Datacenter configurations. However, because requests can be made
across datacenter boundaries, ACL tokens must be valid globally. To avoid
replication issues, a single datacenter is considered authoritative and stores
all the tokens.
When a request is made to a server in a non-authoritative datacenter server, it
must be resolved into the appropriate policy. This is done by reading the token
from the authoritative server and caching the result for a configurable
acl_ttl
. The implication
of caching is that the cache TTL is an upper bound on the staleness of policy
that is enforced. It is possible to set a zero TTL, but this has adverse
performance impacts, as every request requires refreshing the policy via a
cross-datacenter WAN call.
The Consul ACL system is designed with flexible rules to accommodate for an outage
of the acl_datacenter
or networking
issues preventing access to it. In this case, it may be impossible for
servers in non-authoritative datacenters to resolve tokens. Consul provides
a number of configurable acl_down_policy
choices to tune behavior. It is possible to deny or permit all actions or to ignore
cache TTLs and enter a fail-safe mode. The default is to ignore cache TTLs
for any previously resolved tokens and to deny any uncached tokens.
ACLs can also act in either a whitelist or blacklist mode depending
on the configuration of
acl_default_policy
. If the
default policy is to deny all actions, then token rules can be set to whitelist
specific actions. In the inverse, the allow all default behavior is a blacklist
where rules are used to prohibit actions. By default, Consul will allow all
actions.
Blacklist mode and consul exec
If you set acl_default_policy
to deny
, the anonymous
token won't have permission to read the default
_rexec
prefix; therefore, Consul agents using the anonymous
token
won't be able to perform consul exec
actions.
Here's why: the agents need read/write permission to the _rexec
prefix for
consul exec
to work properly. They use that prefix
as the transport for most data.
You can enable consul exec
from agents that are not
configured with a token by allowing the anonymous
token to access that prefix.
This can be done by giving this rule to the anonymous
token:
key "_rexec/" {
policy = "write"
}
Alternatively, you can, of course, add an explicit
acl_token
to each agent, giving it access
to that prefix.
Blacklist mode and Service Discovery
If your acl_default_policy
is
set to deny
, the anonymous
token will be unable to read any service
information. This will cause the service discovery mechanisms in the REST API
and the DNS interface to return no results for any service queries. This is
because internally the API's and DNS interface consume the RPC interface, which
will filter results for services the token has no access to.
You can allow all services to be discovered, mimicing the behavior of pre-0.6.0
releases, by configuring this ACL rule for the anonymous
token:
service "" {
policy = "read"
}
Note that the above will allow access for reading service information only. This level of access allows discovering other services in the system, but is not enough to allow the agent to sync its services and checks into the global catalog during anti-entropy.
The most secure way of handling service registration and discovery is to run Consul 0.6+ and issue tokens with explicit access for the services or service prefixes which are expected to run on each agent.
Blacklist mode and Events
Similar to the above, if your
acl_default_policy
is set to
deny
, the anonymous
token will have no access to allow firing user events.
This deviates from pre-0.6.0 builds, where user events were completely
unrestricted.
Events have their own first-class expression in the ACL syntax. To restore
access to user events from arbitrary agents, configure an ACL rule like the
following for the anonymous
token:
event "" {
policy = "write"
}
As always, the more secure way to handle user events is to explicitly grant access to each API token based on the events they should be able to fire.
Blacklist mode and Keyring Operations
Consul 0.6 and later supports securing the encryption keyring operations using ACL's. Encryption is an optional component of the gossip layer. More information about Consul's keyring operations can be found on the keyring command documentation page.
If your acl_default_policy
is
set to deny
, then the anonymous
token will not have access to read or write
to the encryption keyring. The keyring policy is yet another first-class citizen
in the ACL syntax. You can configure the anonymous token to have free reign over
the keyring using a policy like the following:
keyring = "write"
Encryption keyring operations are sensitive and should be properly secured. It is recommended that instead of configuring a wide-open policy like above, a per-token policy is applied to maximize security.
Bootstrapping ACLs
Bootstrapping the ACL system is done by providing an initial acl_master_token
configuration which will be created
as a "management" type token if it does not exist. Note that the acl_master_token
is only installed when a server acquires
cluster leadership. If you would like to install or change the
acl_master_token
, set the new value for
acl_master_token
in the configuration
for all servers. Once this is done, restart the current leader to force a leader election.
Rule Specification
A core part of the ACL system is a rule language which is used to describe the policy that must be enforced. Consul supports ACLs for both K/Vs and services.
Key policies are defined by coupling a prefix with a policy. The rules are enforced
using a longest-prefix match policy: Consul picks the most specific policy possible. The
policy is either "read", "write", or "deny". A "write" policy implies "read", and there is no
way to specify write-only. If there is no applicable rule, the
acl_default_policy
is applied.
Service policies are defined by coupling a service name and a policy. The rules are
enforced using an longest-prefix match policy (this was an exact match in 0.5, but changed
in 0.5.1). The default rule, applied to any service that doesn't have a matching policy,
is provided using the empty string. A service policy is either "read", "write", or "deny".
A "write" policy implies "read", and there is no way to specify write-only. If there is no
applicable rule, the acl_default_policy
is
applied. The "read" policy in a service ACL rule allows restricting access to
the discovery of that service prefix. More information about service discovery
and ACLs can be found below.
The policy for the "consul" service is always "write" as it is managed internally by Consul.
User event policies are defined by coupling an event name prefix with a policy. The rules are enforced using a longest-prefix match policy. The default rule, applied to any user event without a matching policy, is provided by an empty string. An event policy is one of "read", "write", or "deny". Currently, only the "write" level is enforced during event firing. Events can always be read.
We make use of the HashiCorp Configuration Language (HCL) to specify policy. This language is human readable and interoperable with JSON making it easy to machine-generate.
Specification in the HCL format looks like:
# Default all keys to read-only
key "" {
policy = "read"
}
key "foo/" {
policy = "write"
}
key "foo/private/" {
# Deny access to the dir "foo/private"
policy = "deny"
}
# Default all services to allow registration. Also permits all
# services to be discovered.
service "" {
policy = "write"
}
# Deny registration access to services prefixed "secure-".
# Discovery of the service is still allowed in read mode.
service "secure-" {
policy = "read"
}
# Allow firing any user event by default.
event "" {
policy = "write"
}
# Deny firing events prefixed with "destroy-".
event "destroy-" {
policy = "deny"
}
# Read-only mode for the encryption keyring by default (list only)
keyring = "read"
This is equivalent to the following JSON input:
{
"key": {
"": {
"policy": "read"
},
"foo/": {
"policy": "write"
},
"foo/private": {
"policy": "deny"
}
},
"service": {
"": {
"policy": "write"
},
"secure-": {
"policy": "read"
}
},
"event": {
"": {
"policy": "write"
},
"destroy-": {
"policy": "deny"
}
},
"keyring": "read"
}
Services and Checks with ACLs
Consul allows configuring ACL policies which may control access to service and check registration. In order to successfully register a service or check with these types of policies in place, a token with sufficient privileges must be provided to perform the registration into the global catalog. Consul also performs periodic anti-entropy syncs, which may require an ACL token to complete. To accommodate this, Consul provides two methods of configuring ACL tokens to use for registration events:
- Using the acl_token configuration directive. This allows a single token to be configured globally and used during all service and check registration operations.
- Providing an ACL token with service and check definitions at registration time. This allows for greater flexibility and enables the use of multiple tokens on the same agent. Examples of what this looks like are available for both services and checks. Tokens may also be passed to the HTTP API for operations that require them.
Restricting service discovery with ACLs
In Consul 0.6, the ACL system was extended to support restricting read access to service registrations. This allows tighter access control and limits the ability of a compromised token to discover other services running in a cluster.
The ACL system permits a user to discover services using the REST API or UI if the token used during requests has "read"-level access or greater. Consul will filter out all services which the token has no access to in all API queries, making it appear as though the restricted services do not exist.
Consul's DNS interface is also affected by restrictions to service registrations. If the token used by the agent does not have access to a given service, then the DNS interface will return no records when queried for it.