It seems like this was missing. Previously this was only called by init of ACLs during an upgrade.
Now that legacy ACLs are removed, nothing was calling stop.
Also remove an unused method from client.
TestAgentLeaks_Server was reporting a goroutine leak without this. Not sure if it would actually
be a leak in production or if this is due to the test setup, but seems easy enough to call it
this way until we remove legacyACLTokenUpgrade.
This field has been unnecessary for a while now. It was always set to the same value
as PrimaryDatacenter. So we can remove the duplicate field and use PrimaryDatacenter
directly.
This change was made by GoLand refactor, which did most of the work for me.
The bulk of this commit is moving the LeaderRoutineManager from the agent/consul package into its own package: lib/gort. It also got a renaming and its Start method now requires a context. Requiring that context required updating a whole bunch of other places in the code.
Previously we were inconsistently checking the response for errors. This
PR moves the response-is-error check into raftApply, so that all callers
can look at only the error response, instead of having to know that
errors could come from two places.
This should expose a few more errors that were previously hidden because
in some calls to raftApply we were ignoring the response return value.
Also handle errors more consistently. In some cases we would log the
error before returning it. This can be very confusing because it can
result in the same error being logged multiple times. Instead return
a wrapped error.
This way we only have to wait for the serf barrier to pass once before
we can make use of federation state APIs Without this patch every
restart needs to re-compute the change.
After fixing that bug I uncovered a couple more:
Fix an issue where we might try to cross sign a cert when we never had a valid root.
Fix a potential issue where reconfiguring the CA could cause either the Vault or AWS PCA CA providers to delete resources that are still required by the new incarnation of the CA.
* Consul Service meta wrongly computes and exposes non_voter meta
In Serf Tags, entreprise members being non-voters use the tag
`nonvoter=1`, not `non_voter = false`, so non-voters in members
were wrongly displayed as voter.
Demonstration:
```
consul members -detailed|grep voter
consul20-hk5 10.200.100.110:8301 alive acls=1,build=1.8.4+ent,dc=hk5,expect=3,ft_fs=1,ft_ns=1,id=xxxxxxxx-5629-08f2-3a79-10a1ab3849d5,nonvoter=1,port=8300,raft_vsn=3,role=consul,segment=<all>,use_tls=1,vsn=2,vsn_max=3,vsn_min=2,wan_join_port=8302
```
* Added changelog
* Added changelog entry
- Upgrade the ConfigEntry.ListAll RPC to be kind-aware so that older
copies of consul will not see new config entries it doesn't understand
replicate down.
- Add shim conversion code so that the old API/CLI method of interacting
with intentions will continue to work so long as none of these are
edited via config entry endpoints. Almost all of the read-only APIs will
continue to function indefinitely.
- Add new APIs that operate on individual intentions without IDs so that
the UI doesn't need to implement CAS operations.
- Add a new serf feature flag indicating support for
intentions-as-config-entries.
- The old line-item intentions way of interacting with the state store
will transparently flip between the legacy memdb table and the config
entry representations so that readers will never see a hiccup during
migration where the results are incomplete. It uses a piece of system
metadata to control the flip.
- The primary datacenter will begin migrating intentions into config
entries on startup once all servers in the datacenter are on a version
of Consul with the intentions-as-config-entries feature flag. When it is
complete the old state store representations will be cleared. We also
record a piece of system metadata indicating this has occurred. We use
this metadata to skip ALL of this code the next time the leader starts
up.
- The secondary datacenters continue to run the old intentions
replicator until all servers in the secondary DC and primary DC support
intentions-as-config-entries (via serf flag). Once this condition it met
the old intentions replicator ceases.
- The secondary datacenters replicate the new config entries as they are
migrated in the primary. When they detect that the primary has zeroed
it's old state store table it waits until all config entries up to that
point are replicated and then zeroes its own copy of the old state store
table. We also record a piece of system metadata indicating this has
occurred. We use this metadata to skip ALL of this code the next time
the leader starts up.
In all cases (oss/ent, client/server) this method was returning a value from config. Since the
value is consistent, it doesn't need to be part of the delegate interface.
While upgrading servers to a new version, I saw that metadata of
existing servers are not upgraded, so the version and raft meta
is not up to date in catalog.
The only way to do it was to:
* update Consul server
* make it leave the cluster, then metadata is accurate
That's because the optimization to avoid updating catalog does
not take into account metadata, so no update on catalog is performed.
A Node Identity is very similar to a service identity. Its main targeted use is to allow creating tokens for use by Consul agents that will grant the necessary permissions for all the typical agent operations (node registration, coordinate updates, anti-entropy).
Half of this commit is for golden file based tests of the acl token and role cli output. Another big updates was to refactor many of the tests in agent/consul/acl_endpoint_test.go to use the same style of tests and the same helpers. Besides being less boiler plate in the tests it also uses a common way of starting a test server with ACLs that should operate without any warnings regarding deprecated non-uuid master tokens etc.
Also reduce the log level of some version checking messages on the server as they can be pretty noisy during upgrades and really are more for debugging purposes.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
Ensure we close the Sentinel Evaluator so as not to leak go routines
Fix a bunch of test logging so that various warnings when starting a test agent go to the ltest logger and not straight to stdout.
Various canned ent meta types always return a valid pointer (no more nils). This allows us to blindly deref + assign in various places.
Update ACL index tracking to ensure oss -> ent upgrades will work as expected.
Update ent meta parsing to include function to disallow wildcarding.
Main Changes:
• method signature updates everywhere to account for passing around enterprise meta.
• populate the EnterpriseAuthorizerContext for all ACL related authorizations.
• ACL resource listings now operate like the catalog or kv listings in that the returned entries are filtered down to what the token is allowed to see. With Namespaces its no longer all or nothing.
• Modified the acl.Policy parsing to abstract away basic decoding so that enterprise can do it slightly differently. Also updated method signatures so that when parsing a policy it can take extra ent metadata to use during rules validation and policy creation.
Secondary Changes:
• Moved protobuf encoding functions out of the agentpb package to eliminate circular dependencies.
• Added custom JSON unmarshalers for a few ACL resource types (to support snake case and to get rid of mapstructure)
• AuthMethod validator cache is now an interface as these will be cached per-namespace for Consul Enterprise.
• Added checks for policy/role link existence at the RPC API so we don’t push the request through raft to have it fail internally.
• Forward ACL token delete request to the primary datacenter when the secondary DC doesn’t have the token.
• Added a bunch of ACL test helpers for inserting ACL resource test data.
* ACL Authorizer overhaul
To account for upcoming features every Authorization function can now take an extra *acl.EnterpriseAuthorizerContext. These are unused in OSS and will always be nil.
Additionally the acl package has received some thorough refactoring to enable all of the extra Consul Enterprise specific authorizations including moving sentinel enforcement into the stubbed structs. The Authorizer funcs now return an acl.EnforcementDecision instead of a boolean. This improves the overall interface as it makes multiple Authorizers easily chainable as they now indicate whether they had an authoritative decision or should use some other defaults. A ChainedAuthorizer was added to handle this Authorizer enforcement chain and will never itself return a non-authoritative decision.
* Include stub for extra enterprise rules in the global management policy
* Allow for an upgrade of the global-management policy
* Implement leader routine manager
Switch over the following to use it for go routine management:
• Config entry Replication
• ACL replication - tokens, policies, roles and legacy tokens
• ACL legacy token upgrade
• ACL token reaping
• Intention Replication
• Secondary CA Roots Watching
• CA Root Pruning
Also added the StopAll call into the Server Shutdown method to ensure all leader routines get killed off when shutting down.
This should be mostly unnecessary as `revokeLeadership` should manually stop each one but just in case we really want these to go away (eventually).