* peering: skip register duplicate node and check from the peer
* Prebuilt the nodes map and checks map to avoid repeated for loop
* use key type to struct: node id, service id, and check id
Fix an issue where rpc_hold_timeout was being used as the timeout for non-blocking queries. Users should be able to tune read timeouts without fiddling with rpc_hold_timeout. A new configuration `rpc_read_timeout` is created.
Refactor some implementation from the original PR 11500 to remove the misleading linkage between RPCInfo's timeout (used to retry in case of certain modes of failures) and the client RPC timeouts.
When peering through mesh gateways we expect outbound dials to peer
servers to flow through the local mesh gateway addresses.
Now when establishing a peering we get a list of dial addresses as a
ring buffer that includes local mesh gateway addresses if the local DC
is configured to peer through mesh gateways. The ring buffer includes
the mesh gateway addresses first, but also includes the remote server
addresses as a fallback.
This fallback is present because it's possible that direct egress from
the servers may be allowed. If not allowed then the leader will cycle
back to a mesh gateway address through the ring.
When attempting to dial the remote servers we retry up to a fixed
timeout. If using mesh gateways we also have an initial wait in
order to allow for the mesh gateways to configure themselves.
Note that if we encounter a permission denied error we do not retry
since that error indicates that the secret in the peering token is
invalid.
memdb's `WatchCh` method creates a goroutine that will publish to the
returned channel when the watchset is triggered or the given context
is canceled. Although this is called out in its godoc comment, it's
not obvious that this method creates a goroutine who's lifecycle you
need to manage.
In the xDS capacity controller, we were calling `WatchCh` on each
iteration of the control loop, meaning the number of goroutines would
grow on each autopilot event until there was catalog churn.
In the catalog config source, we were calling `WatchCh` with the
background context, meaning that the goroutine would keep running after
the sync loop had terminated.
* Move stats.go from grpc-internal to grpc-middleware
* Update grpc server metrics with server type label
* Add stats test to grpc-external
* Remove global metrics instance from grpc server tests
A previous commit introduced an internally-managed server certificate
to use for peering-related purposes.
Now the peering token has been updated to match that behavior:
- The server name matches the structure of the server cert
- The CA PEMs correspond to the Connect CA
Note that if Conect is disabled, and by extension the Connect CA, we
fall back to the previous behavior of returning the manually configured
certs and local server SNI.
Several tests were updated to use the gRPC TLS port since they enable
Connect by default. This means that the peering token will embed the
Connect CA, and the dialer will expect a TLS listener.
* updating to serf v0.10.1 and memberlist v0.5.0 to get memberlist size metrics and memberlist broadcast queue depth metric
* update changelog
* update changelog
* correcting changelog
* adding "QueueCheckInterval" for memberlist to test
* updating integration test containers to grab latest api
This commit adds handling so that the replication stream considers
whether the user intends to peer through mesh gateways.
The subscription will return server or mesh gateway addresses depending
on the mesh configuration setting. These watches can be updated at
runtime by modifying the mesh config entry.
This commit introduces a new ACL token used for internal server
management purposes.
It has a few key properties:
- It has unlimited permissions.
- It is persisted through Raft as System Metadata rather than in the
ACL tokens table. This is to avoid users seeing or modifying it.
- It is re-generated on leadership establishment.
Prior to #13244, connect proxies and gateways could only be configured by an
xDS session served by the local client agent.
In an upcoming release, it will be possible to deploy a Consul service mesh
without client agents. In this model, xDS sessions will be handled by the
servers themselves, which necessitates load-balancing to prevent a single
server from receiving a disproportionate amount of load and becoming
overwhelmed.
This introduces a simple form of load-balancing where Consul will attempt to
achieve an even spread of load (xDS sessions) between all healthy servers.
It does so by implementing a concurrent session limiter (limiter.SessionLimiter)
and adjusting the limit according to autopilot state and proxy service
registrations in the catalog.
If a server is already over capacity (i.e. the session limit is lowered),
Consul will begin draining sessions to rebalance the load. This will result
in the client receiving a `RESOURCE_EXHAUSTED` status code. It is the client's
responsibility to observe this response and reconnect to a different server.
Users of the gRPC client connection brokered by the
consul-server-connection-manager library will get this for free.
The rate at which Consul will drain sessions to rebalance load is scaled
dynamically based on the number of proxies in the catalog.
Co-authored-by: Eric Haberkorn <erichaberkorn@gmail.com>
By adding a SpiffeID for server agents, servers can now request a leaf
certificate from the Connect CA.
This new Spiffe ID has a key property: servers are identified by their
datacenter name and trust domain. All servers that share these
attributes will share a ServerURI.
The aim is to use these certificates to verify the server name of ANY
server in a Consul datacenter.
This is the OSS portion of enterprise PR 2460.
Introduces a server-local implementation of the proxycfg.ResolvedServiceConfig
interface that sources data from a blocking query against the server's state
store.
It moves the service config resolution logic into the agent/configentry package
so that it can be used in both the RPC handler and data source.
I've also done a little re-arranging and adding comments to call out data
sources for which there is to be no server-local equivalent.
* draft commit
* add changelog, update test
* remove extra param
* fix test
* update type to account for nil value
* add test for custom passive health check
* update comments and tests
* update description in docs
* fix missing commas
To ease the transition for users, the original gRPC
port can still operate in a deprecated mode as either
plain-text or TLS mode. This behavior should be removed
in a future release whenever we no longer support this.
The resulting behavior from this commit is:
`ports.grpc > 0 && ports.grpc_tls > 0` spawns both plain-text and tls ports.
`ports.grpc > 0 && grpc.tls == undefined` spawns a single plain-text port.
`ports.grpc > 0 && grpc.tls != undefined` spawns a single tls port (backwards compat mode).
Peerings are terminated when a peer decides to delete the peering from
their end. Deleting a peering sends a termination message to the peer
and triggers them to mark the peering as terminated but does NOT delete
the peering itself. This is to prevent peerings from disappearing from
both sides just because one side deleted them.
Previously the Delete endpoint was skipping the deletion if the peering
was not marked as active. However, terminated peerings are also
inactive.
This PR makes some updates so that peerings marked as terminated can be
deleted by users.
We need to watch for changes to peerings and update the server addresses which get served by the ring buffer.
Also, if there is an active connection for a peer, we are getting up-to-date server addresses from the replication stream and can safely ignore the token's addresses which may be stale.
Contains 2 changes to the GetEnvoyBootstrapParams response to support
consul-dataplane.
Exposing node_name and node_id:
consul-dataplane will support providing either the node_id or node_name in its
configuration. Unfortunately, supporting both in the xDS meta adds a fair amount
of complexity (partly because most tables are currently indexed on node_name)
so for now we're going to return them both from the bootstrap params endpoint,
allowing consul-dataplane to exchange a node_id for a node_name (which it will
supply in the xDS meta).
Properly setting service for gateways:
To avoid the need to special case gateways in consul-dataplane, service will now
either be the destination service name for connect proxies, or the gateway
service name. This means it can be used as-is in Envoy configuration (i.e. as a
cluster name or in metric tags).
Consul 1.13.0 changed ServiceVirtualIP to use PeeredServiceName instead of ServiceName which was a breaking change for those using service mesh and wanted to restore their snapshot after upgrading to 1.13.0.
This commit handles existing data with older ServiceName and converts it during restore so that there are no issues when restoring from older snapshots.
1. Create a bexpr filter for performing the filtering
2. Change the state store functions to return the raw (not aggregated)
list of ServiceNodes.
3. Move the aggregate service tags by name logic out of the state store
functions into a new function called from the RPC endpoint
4. Perform the filtering in the endpoint before aggregation.
Previously establishment and pending secrets were only checked at the
RPC layer. However, given that these are Check-and-Set transactions we
should ensure that the given secrets are still valid when persisting a
secret exchange or promotion.
Otherwise it would be possible for concurrent requests to overwrite each
other.
Previously there was a field indicating the operation that triggered a
secrets write. Now there is a message for each operation and it contains
the secret ID being persisted.
Previously the updates to the peering secrets UUID table relied on
inferring what action triggered the update based on a reconciliation
against the existing secrets.
Instead we now explicitly require the operation to be given so that the
inference isn't necessary. This makes the UUID table logic easier to
reason about and fixes some related bugs.
There is also an update so that the peering secrets get handled on
snapshots/restores.
Dialers do not keep track of peering secret UUIDs, so they should not
attempt to clean up data from that table when their peering is deleted.
We also now keep peer server addresses when marking peerings for
deletion. Peer server addresses are used by the ShouldDial() helper
when determining whether the peering is for a dialer or an acceptor.
We need to keep this data so that peering secrets can be cleaned up
accordingly.
* Avoid logging StreamSecretID
* Wrap additional errors in stream handler
* Fix flakiness in leader test and rename servers for clarity. There was
a race condition where the peering was being deleted in the test
before the stream was active. Now the test waits for the stream to be
connected on both sides before deleting the associated peering.
* Run flaky test serially
* defaulting to false because peering will be released as beta
* Ignore peering disabled error in bundles cachetype
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Co-authored-by: freddygv <freddy@hashicorp.com>
Co-authored-by: Matt Keeler <mjkeeler7@gmail.com>
When we receive a FailedPrecondition error, retry that more quickly
because we expect it will resolve shortly. This is particularly
important in the context of Consul servers behind a load balancer
because when establishing a connection we have to retry until we
randomly land on a leader node.
The default retry backoff goes from 2s, 4s, 8s, etc. which can result in
very long delays quite quickly. Instead, this backoff retries in 8ms
five times, then goes exponentially from there: 16ms, 32ms, ... up to a
max of 8152ms.
There were 16 combinations of tests but 4 of them were duplicates since the default key type and bits were "ec" and 256. That entry was commented out to reduce the subtest count to 12.
testrpc.WaitForLeader was failing on arm64 environments; the cause is unknown but it might be due to the environment being flooded with parallel tests making RPC calls. The RPC polling+retry was replaced with a simpler check for leadership based on raft.
- when register service using catalog endpoint, the key of service
name actually should be "service". Add this information to the
error message will help user to quickly fix in the request.
This is the OSS portion of enterprise PR 2352.
It adds a server-local implementation of the proxycfg.PeeredUpstreams interface
based on a blocking query against the server's state store.
It also fixes an omission in the Virtual IP freeing logic where we were never
updating the max index (and therefore blocking queries against
VirtualIPsForAllImportedServices would not return on service deletion).
* peerstream: dialer should reconnect when stream closes
If the stream is closed unexpectedly (i.e. when we haven't received
a terminated message), the dialer should attempt to re-establish the
stream.
Previously, the `HandleStream` would return `nil` when the stream
was closed. The caller then assumed the stream was terminated on purpose
and so didn't reconnect when instead it was stopped unexpectedly and
the dialer should have attempted to reconnect.
Ensure that the peer stream replication rpc can successfully be used with TLS activated.
Also:
- If key material is configured for the gRPC port but HTTPS is not
enabled now TLS will still be activated for the gRPC port.
- peerstream replication stream opened by the establishing-side will now
ignore grpc.WithBlock so that TLS errors will bubble up instead of
being awkwardly delayed or suppressed
This is the OSS portion of enterprise PR 2242.
This PR introduces a server-local implementation of the proxycfg.ServiceList
interface, backed by streaming events and a local materializer.
Previously, public referred to gRPC services that are both exposed on
the dedicated gRPC port and have their definitions in the proto-public
directory (so were considered usable by 3rd parties). Whereas private
referred to services on the multiplexed server port that are only usable
by agents and other servers.
Now, we're splitting these definitions, such that external/internal
refers to the port and public/private refers to whether they can be used
by 3rd parties.
This is necessary because the peering replication API needs to be
exposed on the dedicated port, but is not (yet) suitable for use by 3rd
parties.
- Use some protobuf construction helper methods for brevity.
- Rename a local variable to avoid later shadowing.
- Rename the Nonce field to be more like xDS's naming.
- Be more explicit about which PeerID fields are empty.
For L4/tcp exported services the mesh gateways will not be terminating
TLS. A caller in one peer will be directly establishing TLS connections
to the ultimate exported service in the other peer.
The caller will be doing SAN validation using the replicated SpiffeID
values shipped from the exporting side. There are a class of discovery
chain edits that could be done on the exporting side that would cause
the introduction of a new SpiffeID value. In between the time of the
config entry update on the exporting side and the importing side getting
updated peer stream data requests to the exported service would fail due
to SAN validation errors.
This is unacceptable so instead prohibit the exporting peer from making
changes that would break peering in this way.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
Peer replication is intended to be between separate Consul installs and
effectively should be considered "external". This PR moves the peer
stream replication bidirectional RPC endpoint to the external gRPC
server and ensures that things continue to function.
Currently servers exchange information about their WAN serf port
and RPC port with serf tags, so that they all learn of each other's
addressing information. We intend to make larger use of the new
public-facing gRPC port exposed on all of the servers, so this PR
addresses that by passing around the gRPC port via serf tags and
then ensuring the generated consul service in the catalog has
metadata about that new port as well for ease of non-serf-based lookup.
These changes are primarily for Consul's UI, where we want to be more
specific about the state a peering is in.
- The "initial" state was renamed to pending, and no longer applies to
peerings being established from a peering token.
- Upon request to establish a peering from a peering token, peerings
will be set as "establishing". This will help distinguish between the
two roles: the cluster that generates the peering token and the
cluster that establishes the peering.
- When marked for deletion, peering state will be set to "deleting".
This way the UI determines the deletion via the state rather than the
"DeletedAt" field.
Co-authored-by: freddygv <freddy@hashicorp.com>
This is the OSS portion of enterprise PR 2157.
It builds on the local blocking query work in #13438 to implement the
proxycfg.IntentionUpstreams interface using server-local data.
Also moves the ACL filtering logic from agent/consul into the acl/filter
package so that it can be reused here.
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
This is the OSS portion of enterprise PR 2056.
This commit provides server-local implementations of the proxycfg.ConfigEntry
and proxycfg.ConfigEntryList interfaces, that source data from streaming events.
It makes use of the LocalMaterializer type introduced for peering replication,
adding the necessary support for authorization.
It also adds support for "wildcard" subscriptions (within a topic) to the event
publisher, as this is needed to fetch service-resolvers for all services when
configuring mesh gateways.
Currently, events will be emitted for just the ingress-gateway, service-resolver,
and mesh config entry types, as these are the only entries required by proxycfg
— the events will be emitted on topics named IngressGateway, ServiceResolver,
and MeshConfig topics respectively.
Though these events will only be consumed "locally" for now, they can also be
consumed via the gRPC endpoint (confirmed using grpcurl) so using them from
client agents should be a case of swapping the LocalMaterializer for an
RPCMaterializer.
For initial cluster peering TProxy support we consider all imported services of a partition to be potential upstreams.
We leverage the VirtualIP table because it stores plain service names (e.g. "api", not "api-sidecar-proxy").
When traversing an exported peered service, the discovery chain
evaluation at the other side may re-route the request to a variety of
endpoints. Furthermore we intend to terminate mTLS at the mesh gateway
for arriving peered traffic that is http-like (L7), so the caller needs
to know the mesh gateway's SpiffeID in that case as well.
The following new SpiffeID values will be shipped back in the peerstream
replication:
- tcp: all possible SpiffeIDs resulting from the service-resolver
component of the exported discovery chain
- http-like: the SpiffeID of the mesh gateway