To support Destinations on the service-defaults (for tproxy with terminating gateway), we need to now also make servers watch service-defaults config entries.
* peering: skip register duplicate node and check from the peer
* Prebuilt the nodes map and checks map to avoid repeated for loop
* use key type to struct: node id, service id, and check id
Fix an issue where rpc_hold_timeout was being used as the timeout for non-blocking queries. Users should be able to tune read timeouts without fiddling with rpc_hold_timeout. A new configuration `rpc_read_timeout` is created.
Refactor some implementation from the original PR 11500 to remove the misleading linkage between RPCInfo's timeout (used to retry in case of certain modes of failures) and the client RPC timeouts.
When peering through mesh gateways we expect outbound dials to peer
servers to flow through the local mesh gateway addresses.
Now when establishing a peering we get a list of dial addresses as a
ring buffer that includes local mesh gateway addresses if the local DC
is configured to peer through mesh gateways. The ring buffer includes
the mesh gateway addresses first, but also includes the remote server
addresses as a fallback.
This fallback is present because it's possible that direct egress from
the servers may be allowed. If not allowed then the leader will cycle
back to a mesh gateway address through the ring.
When attempting to dial the remote servers we retry up to a fixed
timeout. If using mesh gateways we also have an initial wait in
order to allow for the mesh gateways to configure themselves.
Note that if we encounter a permission denied error we do not retry
since that error indicates that the secret in the peering token is
invalid.
memdb's `WatchCh` method creates a goroutine that will publish to the
returned channel when the watchset is triggered or the given context
is canceled. Although this is called out in its godoc comment, it's
not obvious that this method creates a goroutine who's lifecycle you
need to manage.
In the xDS capacity controller, we were calling `WatchCh` on each
iteration of the control loop, meaning the number of goroutines would
grow on each autopilot event until there was catalog churn.
In the catalog config source, we were calling `WatchCh` with the
background context, meaning that the goroutine would keep running after
the sync loop had terminated.
* Move stats.go from grpc-internal to grpc-middleware
* Update grpc server metrics with server type label
* Add stats test to grpc-external
* Remove global metrics instance from grpc server tests
A previous commit introduced an internally-managed server certificate
to use for peering-related purposes.
Now the peering token has been updated to match that behavior:
- The server name matches the structure of the server cert
- The CA PEMs correspond to the Connect CA
Note that if Conect is disabled, and by extension the Connect CA, we
fall back to the previous behavior of returning the manually configured
certs and local server SNI.
Several tests were updated to use the gRPC TLS port since they enable
Connect by default. This means that the peering token will embed the
Connect CA, and the dialer will expect a TLS listener.
* updating to serf v0.10.1 and memberlist v0.5.0 to get memberlist size metrics and memberlist broadcast queue depth metric
* update changelog
* update changelog
* correcting changelog
* adding "QueueCheckInterval" for memberlist to test
* updating integration test containers to grab latest api
This commit adds handling so that the replication stream considers
whether the user intends to peer through mesh gateways.
The subscription will return server or mesh gateway addresses depending
on the mesh configuration setting. These watches can be updated at
runtime by modifying the mesh config entry.
This commit introduces a new ACL token used for internal server
management purposes.
It has a few key properties:
- It has unlimited permissions.
- It is persisted through Raft as System Metadata rather than in the
ACL tokens table. This is to avoid users seeing or modifying it.
- It is re-generated on leadership establishment.
Prior to #13244, connect proxies and gateways could only be configured by an
xDS session served by the local client agent.
In an upcoming release, it will be possible to deploy a Consul service mesh
without client agents. In this model, xDS sessions will be handled by the
servers themselves, which necessitates load-balancing to prevent a single
server from receiving a disproportionate amount of load and becoming
overwhelmed.
This introduces a simple form of load-balancing where Consul will attempt to
achieve an even spread of load (xDS sessions) between all healthy servers.
It does so by implementing a concurrent session limiter (limiter.SessionLimiter)
and adjusting the limit according to autopilot state and proxy service
registrations in the catalog.
If a server is already over capacity (i.e. the session limit is lowered),
Consul will begin draining sessions to rebalance the load. This will result
in the client receiving a `RESOURCE_EXHAUSTED` status code. It is the client's
responsibility to observe this response and reconnect to a different server.
Users of the gRPC client connection brokered by the
consul-server-connection-manager library will get this for free.
The rate at which Consul will drain sessions to rebalance load is scaled
dynamically based on the number of proxies in the catalog.
Co-authored-by: Eric Haberkorn <erichaberkorn@gmail.com>
By adding a SpiffeID for server agents, servers can now request a leaf
certificate from the Connect CA.
This new Spiffe ID has a key property: servers are identified by their
datacenter name and trust domain. All servers that share these
attributes will share a ServerURI.
The aim is to use these certificates to verify the server name of ANY
server in a Consul datacenter.