There are a couple reasons for this change:
1. agent.go is way too big. Smaller files makes code eaasier to read
because tools that show usage also include filename which can give
a lot more context to someone trying to understand which functions
call other functions.
2. these two functions call into a large number of functions already in
keyring.go.
This is a small step to allowing Agent to accept its dependencies
instead of creating them in New.
There were two fields in autoconfig.Config that were used exclusively
to load config. These were replaced with a single function, allowing us
to move LoadConfig back to the config package.
Also removed the WithX functions for building a Config. Since these were
simple assignment, it appeared we were not getting much value from them.
Making these functions allows us to cleanup how an agent is initialized. They only make use of a config and a logger, so they do not need to be agent methods.
Also cleanup the testing to use t.Run and require.
Now that it is no longer used, we can remove this unnecessary field. This is a pre-step in cleanup up RuntimeConfig->Consul.Config, which is a pre-step to adding a gRPCHandler component to Server for streaming.
Removing this field also allows us to remove one of the return values from logging.Setup.
Most of the groundwork was laid in previous PRs between adding the cert-monitor package to extracting the logic of signing certificates out of the connect_ca_endpoint.go code and into a method on the server.
This also refactors the auto-config package a bit to split things out into multiple files.
This implements a solution for #7863
It does:
Add a new config cache.entry_fetch_rate to limit the number of calls/s for a given cache entry, default value = rate.Inf
Add cache.entry_fetch_max_burst size of rate limit (default value = 2)
The new configuration now supports the following syntax for instance to allow 1 query every 3s:
command line HCL: -hcl 'cache = { entry_fetch_rate = 0.333}'
in JSON
{
"cache": {
"entry_fetch_rate": 0.333
}
}
The fallback method would still work but it would get into a state where it would let the certificate expire for 10s before getting a new one. And the new one used the less secure RPC endpoint.
This is also a pretty large refactoring of the auto encrypt code. I was going to write some tests around the certificate monitoring but it was going to be impossible to get a TestAgent configured in such a way that I could write a test that ran in less than an hour or two to exercise the functionality.
Moving the certificate monitoring into its own package will allow for dependency injection and in particular mocking the cache types to control how it hands back certificates and how long those certificates should live. This will allow for exercising the main loop more than would be possible with it coupled so tightly with the Agent.
In all cases (oss/ent, client/server) this method was returning a value from config. Since the
value is consistent, it doesn't need to be part of the delegate interface.
Fixes#7527
I want to highlight this and explain what I think the implications are and make sure we are aware:
* `HTTPConnStateFunc` closes the connection when it is beyond the limit. `Close` does not block.
* `HTTPConnStateFuncWithDefault429Handler(10 * time.Millisecond)` blocks until the following is done (worst case):
1) `conn.SetDeadline(10*time.Millisecond)` so that
2) `conn.Write(429error)` is guaranteed to timeout after 10ms, so that the http 429 can be written and
3) `conn.Close` can happen
The implication of this change is that accepting any new connection is worst case delayed by 10ms. But only after a client reached the limit already.
The embedded HTTPServer struct is not used by the large HTTPServer
struct. It is used by tests and the agent. This change is a small first
step in the process of removing that field.
The eventual goal is to reduce the scope of HTTPServer making it easier
to test, and split into separate packages.
The initial auto encrypt CSR wasn’t containing the user supplied IP and DNS SANs. This fixes that. Also We were configuring a default :: IP SAN. This should be ::1 instead and was fixed.
There are a couple of things in here.
First, just like auto encrypt, any Cluster.AutoConfig RPC will implicitly use the less secure RPC mechanism.
This drastically modifies how the Consul Agent starts up and moves most of the responsibilities (other than signal handling) from the cli command and into the Agent.
Right now this is only hooked into the insecure RPC server and requires JWT authorization. If no JWT authorizer is setup in the configuration then we inject a disabled “authorizer” to always report that JWT authorization is disabled.
Three of the checks are temporarily disabled to limit the size of the
diff, and allow us to enable all the other checks in CI.
In a follow up we can fix the issues reported by the other checks one
at a time, and enable them.
Based on work done in https://github.com/hashicorp/memberlist/pull/196
this allows to restrict the IP ranges that can join a given Serf cluster
and be a member of the cluster.
Restrictions on IPs can be done separatly using 2 new differents flags
and config options to restrict IPs for LAN and WAN Serf.
Previously this happened to be using the method on the Server/Client that was meant to allow the ACLResolver to locally resolve tokens. On Servers that had tokens (primary or secondary dc + token replication) this function would lookup the token from raft and return the ACLIdentity. On clients this was always a noop. We inadvertently used this function instead of creating a new one when we added logging accessor ids for permission denied RPC requests.
With this commit, a new method is used for resolving the identity properly via the ACLResolver which may still resolve locally in the case of being on a server with tokens but also supports remote token resolution.
Previously the SupportsBlocking option was specified by a method on the
type, and all the other options were specified from RegisterOptions.
This change moves RegisterOptions to a method on the type, and moves
SupportsBlocking into the options struct.
Currently there are only 2 cache-types. So all cache-types can implement
this method by embedding a struct with those predefined values. In the
future if a cache type needs to be registered more than once with different
options it can remove the embedded type and implement the method in a way
that allows for paramaterization.