Prior to this change, prepared queries had the following behavior for
ACLs, which will need to change to support templates:
1. A management token, or a token with read access to the service being
queried needed to be provided in order to create a prepared query.
2. The token used to create the prepared query was stored with the query
in the state store and used to execute the query.
3. A management token, or the token used to create the query needed to be
supplied to perform and CRUD operations on an existing prepared query.
This was pretty subtle and complicated behavior, and won't work for
templates since the service name is computed at execution time. To solve
this, we introduce a new "prepared-query" ACL type, where the prefix
applies to the query name for static prepared query types and to the
prefix for template prepared query types.
With this change, the new behavior is:
1. A management token, or a token with "prepared-query" write access to
the query name or (soon) the given template prefix is required to do
any CRUD operations on a prepared query, or to list prepared queries
(the list is filtered by this ACL).
2. You will no longer need a management token to list prepared queries,
but you will only be able to see prepared queries that you have access
to (you get an empty list instead of permission denied).
3. When listing or getting a query, because it was easy to capture
management tokens given the past behavior, this will always blank out
the "Token" field (replacing the contents as <hidden>) for all tokens
unless a management token is supplied. Going forward, we should
discourage people from binding tokens for execution unless strictly
necessary.
4. No token will be captured by default when a prepared query is created.
If the user wishes to supply an execution token then can pass it in via
the "Token" field in the prepared query definition. Otherwise, this
field will default to empty.
5. At execution time, we will use the captured token if it exists with the
prepared query definition, otherwise we will use the token that's passed
in with the request, just like we do for other RPCs (or you can use the
agent's configured token for DNS).
6. Prepared queries with no name (accessible only by ID) will not require
ACLs to create or modify (execution time will depend on the service ACL
configuration). Our argument here is that these are designed to be
ephemeral and the IDs are as good as an ACL. Management tokens will be
able to list all of these.
These changes enable templates, but also enable delegation of authority to
manage the prepared query namespace.
* A batch of updates is done all in a single transaction.
* We no longer need to get an update to kick things, there's a periodic flush.
* If incoming updates overwhelm the configured flush rate they will be dumped with an error.
This status must be one of the valid check statuses: 'passing', 'warning', 'critical', 'unknown'.
If the status field is not present or the empty string, the default of 'critical' is used.
Enable setting a specific address in a service definition for advertise. If no specific address is given it will fallback to the node address and reassemble the old behaviour.
The design of the session TTLs is based on the Google Chubby approach
(http://research.google.com/archive/chubby-osdi06.pdf). The Session
struct has an additional TTL field now. This attaches an implicit
heartbeat based failure detector. Tracking of heartbeats is done by
the current leader and not persisted via the Raft log. The implication
of this is during a leader failover, we do not retain the last
heartbeat times.
Similar to Chubby, the TTL represents a lower-bound. Consul promises
not to terminate a session before the TTL has expired, but is allowed
to extend the expiration past it. This enables us to reset the TTL on
a leader failover. The TTL is also extended when the client does a
heartbeat. Like Chubby, this means a TTL is extended on creation,
heartbeat or failover.
Additionally, because we must account for time requests are in transit
and the relative rates of clocks on the clients and servers, Consul
will take the conservative approach of internally multiplying the TTL
by 2x. This helps to compensate for network latency and clock skew
without violating the contract.
Reference: https://docs.google.com/document/d/1Y5-pahLkUaA7Kz4SBU_mehKiyt9yaaUGcBTMZR7lToY/edit?usp=sharing
Added a "delete" behavior for session invalidation, in addition to
the default "release" behavior. On session invalidation, the sessions
Behavior field is checked and if it is set to "delete", all nodes owned
by the session are deleted. If it is "release", then just the locks
are released as default.