rocksdb/utilities/transactions/pessimistic_transaction.cc
Hui Xiao 151242ce46 Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288)
Summary:
**Context:**
The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them.

**Summary**
- Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros`
   - Fixed the default histogram in `RandomAccessFileReader`
- New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader`
- Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288

Test Plan:
- **Stress test**
- **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.**  (without blob)
     - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads.
```
./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10)
```
```
// BlockBasedTable
rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805
rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116
rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689

// PlainTable
Does not apply
```
- **Db bench 2: performance**

**Read**

SETUP: db with 900 files
```
./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none
```run till convergence
```
./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3
```
Pre-change
`readrandom [AVG 60 runs] : 21568 (± 248) ops/sec`
Post-change (no regression, -0.3%)
`readrandom [AVG 60 runs] : 21486 (± 236) ops/sec`

**Compaction/Flush**run till convergence
```
./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none

rocksdb.sst.read.micros  COUNT : 33820
rocksdb.sst.read.flush.micros COUNT : 1800
rocksdb.sst.read.compaction.micros COUNT : 32020
```
Pre-change
`fillseq [AVG 46 runs] : 1391 (± 214) ops/sec;    0.7 (± 0.1) MB/sec`

Post-change (no regression, ~-0.4%)
`fillseq [AVG 46 runs] : 1385 (± 216) ops/sec;    0.7 (± 0.1) MB/sec`

Reviewed By: ajkr

Differential Revision: D44007011

Pulled By: hx235

fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 09:07:18 -07:00

1178 lines
41 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "utilities/transactions/pessimistic_transaction.h"
#include <map>
#include <set>
#include <string>
#include <vector>
#include "db/column_family.h"
#include "db/db_impl/db_impl.h"
#include "logging/logging.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/status.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
#include "utilities/transactions/transaction_util.h"
#include "utilities/write_batch_with_index/write_batch_with_index_internal.h"
namespace ROCKSDB_NAMESPACE {
struct WriteOptions;
std::atomic<TransactionID> PessimisticTransaction::txn_id_counter_(1);
TransactionID PessimisticTransaction::GenTxnID() {
return txn_id_counter_.fetch_add(1);
}
PessimisticTransaction::PessimisticTransaction(
TransactionDB* txn_db, const WriteOptions& write_options,
const TransactionOptions& txn_options, const bool init)
: TransactionBaseImpl(
txn_db->GetRootDB(), write_options,
static_cast_with_check<PessimisticTransactionDB>(txn_db)
->GetLockTrackerFactory()),
txn_db_impl_(nullptr),
expiration_time_(0),
txn_id_(0),
waiting_cf_id_(0),
waiting_key_(nullptr),
lock_timeout_(0),
deadlock_detect_(false),
deadlock_detect_depth_(0),
skip_concurrency_control_(false) {
txn_db_impl_ = static_cast_with_check<PessimisticTransactionDB>(txn_db);
db_impl_ = static_cast_with_check<DBImpl>(db_);
if (init) {
Initialize(txn_options);
}
}
void PessimisticTransaction::Initialize(const TransactionOptions& txn_options) {
// Range lock manager uses address of transaction object as TXNID
const TransactionDBOptions& db_options = txn_db_impl_->GetTxnDBOptions();
if (db_options.lock_mgr_handle &&
db_options.lock_mgr_handle->getLockManager()->IsRangeLockSupported()) {
txn_id_ = reinterpret_cast<TransactionID>(this);
} else {
txn_id_ = GenTxnID();
}
txn_state_ = STARTED;
deadlock_detect_ = txn_options.deadlock_detect;
deadlock_detect_depth_ = txn_options.deadlock_detect_depth;
write_batch_.SetMaxBytes(txn_options.max_write_batch_size);
skip_concurrency_control_ = txn_options.skip_concurrency_control;
lock_timeout_ = txn_options.lock_timeout * 1000;
if (lock_timeout_ < 0) {
// Lock timeout not set, use default
lock_timeout_ =
txn_db_impl_->GetTxnDBOptions().transaction_lock_timeout * 1000;
}
if (txn_options.expiration >= 0) {
expiration_time_ = start_time_ + txn_options.expiration * 1000;
} else {
expiration_time_ = 0;
}
if (txn_options.set_snapshot) {
SetSnapshot();
}
if (expiration_time_ > 0) {
txn_db_impl_->InsertExpirableTransaction(txn_id_, this);
}
use_only_the_last_commit_time_batch_for_recovery_ =
txn_options.use_only_the_last_commit_time_batch_for_recovery;
skip_prepare_ = txn_options.skip_prepare;
read_timestamp_ = kMaxTxnTimestamp;
commit_timestamp_ = kMaxTxnTimestamp;
}
PessimisticTransaction::~PessimisticTransaction() {
txn_db_impl_->UnLock(this, *tracked_locks_);
if (expiration_time_ > 0) {
txn_db_impl_->RemoveExpirableTransaction(txn_id_);
}
if (!name_.empty() && txn_state_ != COMMITTED) {
txn_db_impl_->UnregisterTransaction(this);
}
}
void PessimisticTransaction::Clear() {
txn_db_impl_->UnLock(this, *tracked_locks_);
TransactionBaseImpl::Clear();
}
void PessimisticTransaction::Reinitialize(
TransactionDB* txn_db, const WriteOptions& write_options,
const TransactionOptions& txn_options) {
if (!name_.empty() && txn_state_ != COMMITTED) {
txn_db_impl_->UnregisterTransaction(this);
}
TransactionBaseImpl::Reinitialize(txn_db->GetRootDB(), write_options);
Initialize(txn_options);
}
bool PessimisticTransaction::IsExpired() const {
if (expiration_time_ > 0) {
if (dbimpl_->GetSystemClock()->NowMicros() >= expiration_time_) {
// Transaction is expired.
return true;
}
}
return false;
}
WriteCommittedTxn::WriteCommittedTxn(TransactionDB* txn_db,
const WriteOptions& write_options,
const TransactionOptions& txn_options)
: PessimisticTransaction(txn_db, write_options, txn_options) {}
Status WriteCommittedTxn::GetForUpdate(const ReadOptions& read_options,
ColumnFamilyHandle* column_family,
const Slice& key, std::string* value,
bool exclusive, const bool do_validate) {
return GetForUpdateImpl(read_options, column_family, key, value, exclusive,
do_validate);
}
Status WriteCommittedTxn::GetForUpdate(const ReadOptions& read_options,
ColumnFamilyHandle* column_family,
const Slice& key,
PinnableSlice* pinnable_val,
bool exclusive, const bool do_validate) {
return GetForUpdateImpl(read_options, column_family, key, pinnable_val,
exclusive, do_validate);
}
template <typename TValue>
inline Status WriteCommittedTxn::GetForUpdateImpl(
const ReadOptions& read_options, ColumnFamilyHandle* column_family,
const Slice& key, TValue* value, bool exclusive, const bool do_validate) {
if (read_options.io_activity != Env::IOActivity::kUnknown) {
return Status::InvalidArgument(
"Cannot call GetForUpdate with `ReadOptions::io_activity` != "
"`Env::IOActivity::kUnknown`");
}
column_family =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(column_family);
if (!read_options.timestamp) {
const Comparator* const ucmp = column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (0 == ts_sz) {
return TransactionBaseImpl::GetForUpdate(read_options, column_family, key,
value, exclusive, do_validate);
}
} else {
Status s = db_impl_->FailIfTsMismatchCf(
column_family, *(read_options.timestamp), /*ts_for_read=*/true);
if (!s.ok()) {
return s;
}
}
if (!do_validate) {
return Status::InvalidArgument(
"If do_validate is false then GetForUpdate with read_timestamp is not "
"defined.");
} else if (kMaxTxnTimestamp == read_timestamp_) {
return Status::InvalidArgument("read_timestamp must be set for validation");
}
if (!read_options.timestamp) {
ReadOptions read_opts_copy = read_options;
char ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(ts_buf, read_timestamp_);
Slice ts(ts_buf, sizeof(ts_buf));
read_opts_copy.timestamp = &ts;
return TransactionBaseImpl::GetForUpdate(read_opts_copy, column_family, key,
value, exclusive, do_validate);
}
assert(read_options.timestamp);
const char* const ts_buf = read_options.timestamp->data();
assert(read_options.timestamp->size() == sizeof(kMaxTxnTimestamp));
TxnTimestamp ts = DecodeFixed64(ts_buf);
if (ts != read_timestamp_) {
return Status::InvalidArgument("Must read from the same read_timestamp");
}
return TransactionBaseImpl::GetForUpdate(read_options, column_family, key,
value, exclusive, do_validate);
}
Status WriteCommittedTxn::Put(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::Put(ColumnFamilyHandle* column_family,
const SliceParts& key, const SliceParts& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::PutUntracked(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
return Operate(
column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, &value, this]() {
Status s = GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::PutUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key,
const SliceParts& value) {
return Operate(
column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, &value, this]() {
Status s = GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::Delete(ColumnFamilyHandle* column_family,
const Slice& key, const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::Delete(ColumnFamilyHandle* column_family,
const SliceParts& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::DeleteUntracked(ColumnFamilyHandle* column_family,
const Slice& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::DeleteUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDelete(ColumnFamilyHandle* column_family,
const Slice& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDelete(ColumnFamilyHandle* column_family,
const SliceParts& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDeleteUntracked(
ColumnFamilyHandle* column_family, const Slice& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::Merge(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Merge(column_family, key, value);
if (s.ok()) {
++num_merges_;
}
return s;
});
}
template <typename TKey, typename TOperation>
Status WriteCommittedTxn::Operate(ColumnFamilyHandle* column_family,
const TKey& key, const bool do_validate,
const bool assume_tracked,
TOperation&& operation) {
Status s;
if constexpr (std::is_same_v<Slice, TKey>) {
s = TryLock(column_family, key, /*read_only=*/false, /*exclusive=*/true,
do_validate, assume_tracked);
} else if constexpr (std::is_same_v<SliceParts, TKey>) {
std::string key_buf;
Slice contiguous_key(key, &key_buf);
s = TryLock(column_family, contiguous_key, /*read_only=*/false,
/*exclusive=*/true, do_validate, assume_tracked);
}
if (!s.ok()) {
return s;
}
column_family =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(column_family);
const Comparator* const ucmp = column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (ts_sz > 0) {
assert(ts_sz == sizeof(TxnTimestamp));
if (!IndexingEnabled()) {
cfs_with_ts_tracked_when_indexing_disabled_.insert(
column_family->GetID());
}
}
return operation();
}
Status WriteCommittedTxn::SetReadTimestampForValidation(TxnTimestamp ts) {
if (read_timestamp_ < kMaxTxnTimestamp && ts < read_timestamp_) {
return Status::InvalidArgument(
"Cannot decrease read timestamp for validation");
}
read_timestamp_ = ts;
return Status::OK();
}
Status WriteCommittedTxn::SetCommitTimestamp(TxnTimestamp ts) {
if (read_timestamp_ < kMaxTxnTimestamp && ts <= read_timestamp_) {
return Status::InvalidArgument(
"Cannot commit at timestamp smaller than or equal to read timestamp");
}
commit_timestamp_ = ts;
return Status::OK();
}
Status PessimisticTransaction::CommitBatch(WriteBatch* batch) {
if (batch && WriteBatchInternal::HasKeyWithTimestamp(*batch)) {
// CommitBatch() needs to lock the keys in the batch.
// However, the application also needs to specify the timestamp for the
// keys in batch before calling this API.
// This means timestamp order may violate the order of locking, thus
// violate the sequence number order for the same user key.
// Therefore, we disallow this operation for now.
return Status::NotSupported(
"Batch to commit includes timestamp assigned before locking");
}
std::unique_ptr<LockTracker> keys_to_unlock(lock_tracker_factory_.Create());
Status s = LockBatch(batch, keys_to_unlock.get());
if (!s.ok()) {
return s;
}
bool can_commit = false;
if (IsExpired()) {
s = Status::Expired();
} else if (expiration_time_ > 0) {
TransactionState expected = STARTED;
can_commit = std::atomic_compare_exchange_strong(&txn_state_, &expected,
AWAITING_COMMIT);
} else if (txn_state_ == STARTED) {
// lock stealing is not a concern
can_commit = true;
}
if (can_commit) {
txn_state_.store(AWAITING_COMMIT);
s = CommitBatchInternal(batch);
if (s.ok()) {
txn_state_.store(COMMITTED);
}
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
txn_db_impl_->UnLock(this, *keys_to_unlock);
return s;
}
Status PessimisticTransaction::Prepare() {
if (name_.empty()) {
return Status::InvalidArgument(
"Cannot prepare a transaction that has not been named.");
}
if (IsExpired()) {
return Status::Expired();
}
Status s;
bool can_prepare = false;
if (expiration_time_ > 0) {
// must concern ourselves with expiraton and/or lock stealing
// need to compare/exchange bc locks could be stolen under us here
TransactionState expected = STARTED;
can_prepare = std::atomic_compare_exchange_strong(&txn_state_, &expected,
AWAITING_PREPARE);
} else if (txn_state_ == STARTED) {
// expiration and lock stealing is not possible
txn_state_.store(AWAITING_PREPARE);
can_prepare = true;
}
if (can_prepare) {
// transaction can't expire after preparation
expiration_time_ = 0;
assert(log_number_ == 0 ||
txn_db_impl_->GetTxnDBOptions().write_policy == WRITE_UNPREPARED);
s = PrepareInternal();
if (s.ok()) {
txn_state_.store(PREPARED);
}
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else if (txn_state_ == PREPARED) {
s = Status::InvalidArgument("Transaction has already been prepared.");
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("Transaction has already been committed.");
} else if (txn_state_ == ROLLEDBACK) {
s = Status::InvalidArgument("Transaction has already been rolledback.");
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
return s;
}
Status WriteCommittedTxn::PrepareInternal() {
WriteOptions write_options = write_options_;
write_options.disableWAL = false;
auto s = WriteBatchInternal::MarkEndPrepare(GetWriteBatch()->GetWriteBatch(),
name_);
assert(s.ok());
class MarkLogCallback : public PreReleaseCallback {
public:
MarkLogCallback(DBImpl* db, bool two_write_queues)
: db_(db), two_write_queues_(two_write_queues) {
(void)two_write_queues_; // to silence unused private field warning
}
virtual Status Callback(SequenceNumber, bool is_mem_disabled,
uint64_t log_number, size_t /*index*/,
size_t /*total*/) override {
#ifdef NDEBUG
(void)is_mem_disabled;
#endif
assert(log_number != 0);
assert(!two_write_queues_ || is_mem_disabled); // implies the 2nd queue
db_->logs_with_prep_tracker()->MarkLogAsContainingPrepSection(log_number);
return Status::OK();
}
private:
DBImpl* db_;
bool two_write_queues_;
} mark_log_callback(db_impl_,
db_impl_->immutable_db_options().two_write_queues);
WriteCallback* const kNoWriteCallback = nullptr;
const uint64_t kRefNoLog = 0;
const bool kDisableMemtable = true;
SequenceNumber* const KIgnoreSeqUsed = nullptr;
const size_t kNoBatchCount = 0;
s = db_impl_->WriteImpl(write_options, GetWriteBatch()->GetWriteBatch(),
kNoWriteCallback, &log_number_, kRefNoLog,
kDisableMemtable, KIgnoreSeqUsed, kNoBatchCount,
&mark_log_callback);
return s;
}
Status PessimisticTransaction::Commit() {
bool commit_without_prepare = false;
bool commit_prepared = false;
if (IsExpired()) {
return Status::Expired();
}
if (expiration_time_ > 0) {
// we must atomicaly compare and exchange the state here because at
// this state in the transaction it is possible for another thread
// to change our state out from under us in the even that we expire and have
// our locks stolen. In this case the only valid state is STARTED because
// a state of PREPARED would have a cleared expiration_time_.
TransactionState expected = STARTED;
commit_without_prepare = std::atomic_compare_exchange_strong(
&txn_state_, &expected, AWAITING_COMMIT);
TEST_SYNC_POINT("TransactionTest::ExpirableTransactionDataRace:1");
} else if (txn_state_ == PREPARED) {
// expiration and lock stealing is not a concern
commit_prepared = true;
} else if (txn_state_ == STARTED) {
// expiration and lock stealing is not a concern
if (skip_prepare_) {
commit_without_prepare = true;
} else {
return Status::TxnNotPrepared();
}
}
Status s;
if (commit_without_prepare) {
assert(!commit_prepared);
if (WriteBatchInternal::Count(GetCommitTimeWriteBatch()) > 0) {
s = Status::InvalidArgument(
"Commit-time batch contains values that will not be committed.");
} else {
txn_state_.store(AWAITING_COMMIT);
if (log_number_ > 0) {
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
}
s = CommitWithoutPrepareInternal();
if (!name_.empty()) {
txn_db_impl_->UnregisterTransaction(this);
}
Clear();
if (s.ok()) {
txn_state_.store(COMMITTED);
}
}
} else if (commit_prepared) {
txn_state_.store(AWAITING_COMMIT);
s = CommitInternal();
if (!s.ok()) {
ROCKS_LOG_WARN(db_impl_->immutable_db_options().info_log,
"Commit write failed");
return s;
}
// FindObsoleteFiles must now look to the memtables
// to determine what prep logs must be kept around,
// not the prep section heap.
assert(log_number_ > 0);
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
txn_db_impl_->UnregisterTransaction(this);
Clear();
txn_state_.store(COMMITTED);
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("Transaction has already been committed.");
} else if (txn_state_ == ROLLEDBACK) {
s = Status::InvalidArgument("Transaction has already been rolledback.");
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
return s;
}
Status WriteCommittedTxn::CommitWithoutPrepareInternal() {
WriteBatchWithIndex* wbwi = GetWriteBatch();
assert(wbwi);
WriteBatch* wb = wbwi->GetWriteBatch();
assert(wb);
const bool needs_ts = WriteBatchInternal::HasKeyWithTimestamp(*wb);
if (needs_ts && commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must assign a commit timestamp");
}
if (needs_ts) {
assert(commit_timestamp_ != kMaxTxnTimestamp);
char commit_ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(commit_ts_buf, commit_timestamp_);
Slice commit_ts(commit_ts_buf, sizeof(commit_ts_buf));
Status s =
wb->UpdateTimestamps(commit_ts, [wbwi, this](uint32_t cf) -> size_t {
auto cf_iter = cfs_with_ts_tracked_when_indexing_disabled_.find(cf);
if (cf_iter != cfs_with_ts_tracked_when_indexing_disabled_.end()) {
return sizeof(kMaxTxnTimestamp);
}
const Comparator* ucmp =
WriteBatchWithIndexInternal::GetUserComparator(*wbwi, cf);
return ucmp ? ucmp->timestamp_size()
: std::numeric_limits<uint64_t>::max();
});
if (!s.ok()) {
return s;
}
}
uint64_t seq_used = kMaxSequenceNumber;
SnapshotCreationCallback snapshot_creation_cb(db_impl_, commit_timestamp_,
snapshot_notifier_, snapshot_);
PostMemTableCallback* post_mem_cb = nullptr;
if (snapshot_needed_) {
if (commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must set transaction commit timestamp");
} else {
post_mem_cb = &snapshot_creation_cb;
}
}
auto s = db_impl_->WriteImpl(write_options_, wb,
/*callback*/ nullptr, /*log_used*/ nullptr,
/*log_ref*/ 0, /*disable_memtable*/ false,
&seq_used, /*batch_cnt=*/0,
/*pre_release_callback=*/nullptr, post_mem_cb);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status WriteCommittedTxn::CommitBatchInternal(WriteBatch* batch, size_t) {
uint64_t seq_used = kMaxSequenceNumber;
auto s = db_impl_->WriteImpl(write_options_, batch, /*callback*/ nullptr,
/*log_used*/ nullptr, /*log_ref*/ 0,
/*disable_memtable*/ false, &seq_used);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status WriteCommittedTxn::CommitInternal() {
WriteBatchWithIndex* wbwi = GetWriteBatch();
assert(wbwi);
WriteBatch* wb = wbwi->GetWriteBatch();
assert(wb);
const bool needs_ts = WriteBatchInternal::HasKeyWithTimestamp(*wb);
if (needs_ts && commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must assign a commit timestamp");
}
// We take the commit-time batch and append the Commit marker.
// The Memtable will ignore the Commit marker in non-recovery mode
WriteBatch* working_batch = GetCommitTimeWriteBatch();
Status s;
if (!needs_ts) {
s = WriteBatchInternal::MarkCommit(working_batch, name_);
} else {
assert(commit_timestamp_ != kMaxTxnTimestamp);
char commit_ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(commit_ts_buf, commit_timestamp_);
Slice commit_ts(commit_ts_buf, sizeof(commit_ts_buf));
s = WriteBatchInternal::MarkCommitWithTimestamp(working_batch, name_,
commit_ts);
if (s.ok()) {
s = wb->UpdateTimestamps(commit_ts, [wbwi, this](uint32_t cf) -> size_t {
if (cfs_with_ts_tracked_when_indexing_disabled_.find(cf) !=
cfs_with_ts_tracked_when_indexing_disabled_.end()) {
return sizeof(kMaxTxnTimestamp);
}
const Comparator* ucmp =
WriteBatchWithIndexInternal::GetUserComparator(*wbwi, cf);
return ucmp ? ucmp->timestamp_size()
: std::numeric_limits<uint64_t>::max();
});
}
}
if (!s.ok()) {
return s;
}
// any operations appended to this working_batch will be ignored from WAL
working_batch->MarkWalTerminationPoint();
// insert prepared batch into Memtable only skipping WAL.
// Memtable will ignore BeginPrepare/EndPrepare markers
// in non recovery mode and simply insert the values
s = WriteBatchInternal::Append(working_batch, wb);
assert(s.ok());
uint64_t seq_used = kMaxSequenceNumber;
SnapshotCreationCallback snapshot_creation_cb(db_impl_, commit_timestamp_,
snapshot_notifier_, snapshot_);
PostMemTableCallback* post_mem_cb = nullptr;
if (snapshot_needed_) {
if (commit_timestamp_ == kMaxTxnTimestamp) {
s = Status::InvalidArgument("Must set transaction commit timestamp");
return s;
} else {
post_mem_cb = &snapshot_creation_cb;
}
}
s = db_impl_->WriteImpl(write_options_, working_batch, /*callback*/ nullptr,
/*log_used*/ nullptr, /*log_ref*/ log_number_,
/*disable_memtable*/ false, &seq_used,
/*batch_cnt=*/0, /*pre_release_callback=*/nullptr,
post_mem_cb);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status PessimisticTransaction::Rollback() {
Status s;
if (txn_state_ == PREPARED) {
txn_state_.store(AWAITING_ROLLBACK);
s = RollbackInternal();
if (s.ok()) {
// we do not need to keep our prepared section around
assert(log_number_ > 0);
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
Clear();
txn_state_.store(ROLLEDBACK);
}
} else if (txn_state_ == STARTED) {
if (log_number_ > 0) {
assert(txn_db_impl_->GetTxnDBOptions().write_policy == WRITE_UNPREPARED);
assert(GetId() > 0);
s = RollbackInternal();
if (s.ok()) {
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
}
}
// prepare couldn't have taken place
Clear();
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("This transaction has already been committed.");
} else {
s = Status::InvalidArgument(
"Two phase transaction is not in state for rollback.");
}
return s;
}
Status WriteCommittedTxn::RollbackInternal() {
WriteBatch rollback_marker;
auto s = WriteBatchInternal::MarkRollback(&rollback_marker, name_);
assert(s.ok());
s = db_impl_->WriteImpl(write_options_, &rollback_marker);
return s;
}
Status PessimisticTransaction::RollbackToSavePoint() {
if (txn_state_ != STARTED) {
return Status::InvalidArgument("Transaction is beyond state for rollback.");
}
if (save_points_ != nullptr && !save_points_->empty()) {
// Unlock any keys locked since last transaction
auto& save_point_tracker = *save_points_->top().new_locks_;
std::unique_ptr<LockTracker> t(
tracked_locks_->GetTrackedLocksSinceSavePoint(save_point_tracker));
if (t) {
txn_db_impl_->UnLock(this, *t);
}
}
return TransactionBaseImpl::RollbackToSavePoint();
}
// Lock all keys in this batch.
// On success, caller should unlock keys_to_unlock
Status PessimisticTransaction::LockBatch(WriteBatch* batch,
LockTracker* keys_to_unlock) {
if (!batch) {
return Status::InvalidArgument("batch is nullptr");
}
class Handler : public WriteBatch::Handler {
public:
// Sorted map of column_family_id to sorted set of keys.
// Since LockBatch() always locks keys in sorted order, it cannot deadlock
// with itself. We're not using a comparator here since it doesn't matter
// what the sorting is as long as it's consistent.
std::map<uint32_t, std::set<std::string>> keys_;
Handler() {}
void RecordKey(uint32_t column_family_id, const Slice& key) {
std::string key_str = key.ToString();
auto& cfh_keys = keys_[column_family_id];
auto iter = cfh_keys.find(key_str);
if (iter == cfh_keys.end()) {
// key not yet seen, store it.
cfh_keys.insert({std::move(key_str)});
}
}
Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& /* unused */) override {
RecordKey(column_family_id, key);
return Status::OK();
}
Status MergeCF(uint32_t column_family_id, const Slice& key,
const Slice& /* unused */) override {
RecordKey(column_family_id, key);
return Status::OK();
}
Status DeleteCF(uint32_t column_family_id, const Slice& key) override {
RecordKey(column_family_id, key);
return Status::OK();
}
};
// Iterating on this handler will add all keys in this batch into keys
Handler handler;
Status s = batch->Iterate(&handler);
if (!s.ok()) {
return s;
}
// Attempt to lock all keys
for (const auto& cf_iter : handler.keys_) {
uint32_t cfh_id = cf_iter.first;
auto& cfh_keys = cf_iter.second;
for (const auto& key_iter : cfh_keys) {
const std::string& key = key_iter;
s = txn_db_impl_->TryLock(this, cfh_id, key, true /* exclusive */);
if (!s.ok()) {
break;
}
PointLockRequest r;
r.column_family_id = cfh_id;
r.key = key;
r.seq = kMaxSequenceNumber;
r.read_only = false;
r.exclusive = true;
keys_to_unlock->Track(r);
}
if (!s.ok()) {
break;
}
}
if (!s.ok()) {
txn_db_impl_->UnLock(this, *keys_to_unlock);
}
return s;
}
// Attempt to lock this key.
// Returns OK if the key has been successfully locked. Non-ok, otherwise.
// If check_shapshot is true and this transaction has a snapshot set,
// this key will only be locked if there have been no writes to this key since
// the snapshot time.
Status PessimisticTransaction::TryLock(ColumnFamilyHandle* column_family,
const Slice& key, bool read_only,
bool exclusive, const bool do_validate,
const bool assume_tracked) {
assert(!assume_tracked || !do_validate);
Status s;
if (UNLIKELY(skip_concurrency_control_)) {
return s;
}
uint32_t cfh_id = GetColumnFamilyID(column_family);
std::string key_str = key.ToString();
PointLockStatus status;
bool lock_upgrade;
bool previously_locked;
if (tracked_locks_->IsPointLockSupported()) {
status = tracked_locks_->GetPointLockStatus(cfh_id, key_str);
previously_locked = status.locked;
lock_upgrade = previously_locked && exclusive && !status.exclusive;
} else {
// If the record is tracked, we can assume it was locked, too.
previously_locked = assume_tracked;
status.locked = false;
lock_upgrade = false;
}
// Lock this key if this transactions hasn't already locked it or we require
// an upgrade.
if (!previously_locked || lock_upgrade) {
s = txn_db_impl_->TryLock(this, cfh_id, key_str, exclusive);
}
const ColumnFamilyHandle* const cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
SetSnapshotIfNeeded();
// Even though we do not care about doing conflict checking for this write,
// we still need to take a lock to make sure we do not cause a conflict with
// some other write. However, we do not need to check if there have been
// any writes since this transaction's snapshot.
// TODO(agiardullo): could optimize by supporting shared txn locks in the
// future.
SequenceNumber tracked_at_seq =
status.locked ? status.seq : kMaxSequenceNumber;
if (!do_validate || (snapshot_ == nullptr &&
(0 == ts_sz || kMaxTxnTimestamp == read_timestamp_))) {
if (assume_tracked && !previously_locked &&
tracked_locks_->IsPointLockSupported()) {
s = Status::InvalidArgument(
"assume_tracked is set but it is not tracked yet");
}
// Need to remember the earliest sequence number that we know that this
// key has not been modified after. This is useful if this same
// transaction later tries to lock this key again.
if (tracked_at_seq == kMaxSequenceNumber) {
// Since we haven't checked a snapshot, we only know this key has not
// been modified since after we locked it.
// Note: when last_seq_same_as_publish_seq_==false this is less than the
// latest allocated seq but it is ok since i) this is just a heuristic
// used only as a hint to avoid actual check for conflicts, ii) this would
// cause a false positive only if the snapthot is taken right after the
// lock, which would be an unusual sequence.
tracked_at_seq = db_->GetLatestSequenceNumber();
}
} else if (s.ok()) {
// If a snapshot is set, we need to make sure the key hasn't been modified
// since the snapshot. This must be done after we locked the key.
// If we already have validated an earilier snapshot it must has been
// reflected in tracked_at_seq and ValidateSnapshot will return OK.
s = ValidateSnapshot(column_family, key, &tracked_at_seq);
if (!s.ok()) {
// Failed to validate key
// Unlock key we just locked
if (lock_upgrade) {
s = txn_db_impl_->TryLock(this, cfh_id, key_str, false /* exclusive */);
assert(s.ok());
} else if (!previously_locked) {
txn_db_impl_->UnLock(this, cfh_id, key.ToString());
}
}
}
if (s.ok()) {
// We must track all the locked keys so that we can unlock them later. If
// the key is already locked, this func will update some stats on the
// tracked key. It could also update the tracked_at_seq if it is lower
// than the existing tracked key seq. These stats are necessary for
// RollbackToSavePoint to determine whether a key can be safely removed
// from tracked_keys_. Removal can only be done if a key was only locked
// during the current savepoint.
//
// Recall that if assume_tracked is true, we assume that TrackKey has been
// called previously since the last savepoint, with the same exclusive
// setting, and at a lower sequence number, so skipping here should be
// safe.
if (!assume_tracked) {
TrackKey(cfh_id, key_str, tracked_at_seq, read_only, exclusive);
} else {
#ifndef NDEBUG
if (tracked_locks_->IsPointLockSupported()) {
PointLockStatus lock_status =
tracked_locks_->GetPointLockStatus(cfh_id, key_str);
assert(lock_status.locked);
assert(lock_status.seq <= tracked_at_seq);
assert(lock_status.exclusive == exclusive);
}
#endif
}
}
return s;
}
Status PessimisticTransaction::GetRangeLock(ColumnFamilyHandle* column_family,
const Endpoint& start_endp,
const Endpoint& end_endp) {
ColumnFamilyHandle* cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
uint32_t cfh_id = GetColumnFamilyID(cfh);
Status s = txn_db_impl_->TryRangeLock(this, cfh_id, start_endp, end_endp);
if (s.ok()) {
RangeLockRequest req{cfh_id, start_endp, end_endp};
tracked_locks_->Track(req);
}
return s;
}
// Return OK() if this key has not been modified more recently than the
// transaction snapshot_.
// tracked_at_seq is the global seq at which we either locked the key or already
// have done ValidateSnapshot.
Status PessimisticTransaction::ValidateSnapshot(
ColumnFamilyHandle* column_family, const Slice& key,
SequenceNumber* tracked_at_seq) {
assert(snapshot_ || read_timestamp_ < kMaxTxnTimestamp);
SequenceNumber snap_seq = 0;
if (snapshot_) {
snap_seq = snapshot_->GetSequenceNumber();
if (*tracked_at_seq <= snap_seq) {
// If the key has been previous validated (or locked) at a sequence number
// earlier than the current snapshot's sequence number, we already know it
// has not been modified aftter snap_seq either.
return Status::OK();
}
} else {
snap_seq = db_impl_->GetLatestSequenceNumber();
}
// Otherwise we have either
// 1: tracked_at_seq == kMaxSequenceNumber, i.e., first time tracking the key
// 2: snap_seq < tracked_at_seq: last time we lock the key was via
// do_validate=false which means we had skipped ValidateSnapshot. In both
// cases we should do ValidateSnapshot now.
*tracked_at_seq = snap_seq;
ColumnFamilyHandle* cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
std::string ts_buf;
if (ts_sz > 0 && read_timestamp_ < kMaxTxnTimestamp) {
assert(ts_sz == sizeof(read_timestamp_));
PutFixed64(&ts_buf, read_timestamp_);
}
return TransactionUtil::CheckKeyForConflicts(
db_impl_, cfh, key.ToString(), snap_seq, ts_sz == 0 ? nullptr : &ts_buf,
false /* cache_only */);
}
bool PessimisticTransaction::TryStealingLocks() {
assert(IsExpired());
TransactionState expected = STARTED;
return std::atomic_compare_exchange_strong(&txn_state_, &expected,
LOCKS_STOLEN);
}
void PessimisticTransaction::UnlockGetForUpdate(
ColumnFamilyHandle* column_family, const Slice& key) {
txn_db_impl_->UnLock(this, GetColumnFamilyID(column_family), key.ToString());
}
Status PessimisticTransaction::SetName(const TransactionName& name) {
Status s;
if (txn_state_ == STARTED) {
if (name_.length()) {
s = Status::InvalidArgument("Transaction has already been named.");
} else if (txn_db_impl_->GetTransactionByName(name) != nullptr) {
s = Status::InvalidArgument("Transaction name must be unique.");
} else if (name.length() < 1 || name.length() > 512) {
s = Status::InvalidArgument(
"Transaction name length must be between 1 and 512 chars.");
} else {
name_ = name;
txn_db_impl_->RegisterTransaction(this);
}
} else {
s = Status::InvalidArgument("Transaction is beyond state for naming.");
}
return s;
}
} // namespace ROCKSDB_NAMESPACE