rocksdb/utilities/transactions/pessimistic_transaction.cc

1178 lines
41 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "utilities/transactions/pessimistic_transaction.h"
#include <map>
#include <set>
#include <string>
#include <vector>
#include "db/column_family.h"
#include "db/db_impl/db_impl.h"
#include "logging/logging.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/status.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
#include "utilities/transactions/transaction_util.h"
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
#include "utilities/write_batch_with_index/write_batch_with_index_internal.h"
namespace ROCKSDB_NAMESPACE {
struct WriteOptions;
std::atomic<TransactionID> PessimisticTransaction::txn_id_counter_(1);
TransactionID PessimisticTransaction::GenTxnID() {
return txn_id_counter_.fetch_add(1);
}
PessimisticTransaction::PessimisticTransaction(
TransactionDB* txn_db, const WriteOptions& write_options,
const TransactionOptions& txn_options, const bool init)
: TransactionBaseImpl(
txn_db->GetRootDB(), write_options,
static_cast_with_check<PessimisticTransactionDB>(txn_db)
->GetLockTrackerFactory()),
txn_db_impl_(nullptr),
expiration_time_(0),
txn_id_(0),
waiting_cf_id_(0),
waiting_key_(nullptr),
lock_timeout_(0),
deadlock_detect_(false),
deadlock_detect_depth_(0),
skip_concurrency_control_(false) {
txn_db_impl_ = static_cast_with_check<PessimisticTransactionDB>(txn_db);
db_impl_ = static_cast_with_check<DBImpl>(db_);
if (init) {
Initialize(txn_options);
}
}
void PessimisticTransaction::Initialize(const TransactionOptions& txn_options) {
Fix locktree accesses to PessimisticTransactions (#9898) Summary: The current locktree implementation stores the address of the PessimisticTransactions object as the TXNID. However, when a transaction is blocked on a lock, it records the list of waitees with conflicting locks using the rocksdb assigned TransactionID. This is performed by calling GetID() on PessimisticTransactions objects of the waitees, and then recorded in the waiter's list. However, there is no guarantee the objects are valid when recording the waitee list during the conflict callbacks because the waitee could have released the lock and freed the PessimisticTransactions object. The waitee/txnid values are only valid PessimisticTransaction objects while the mutex for the root of the locktree is held. The simplest fix for this problem is to use the address of the PessimisticTransaction as the TransactionID so that it is consistent with its usage in the locktree. The TXNID is only converted back to a PessimisticTransaction for the report_wait callbacks. Since these callbacks are now all made within the critical section where the lock_request queue mutx is held, these conversions will be safe. Otherwise, only the uint64_t TXNID of the waitee is registerd with the waiter transaction. The PessimisitcTransaction object of the waitee is never referenced. The main downside of this approach is the TransactionID will not change if the PessimisticTransaction object is reused for new transactions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9898 Test Plan: Add a new test case and run unit tests. Also verified with MyRocks workloads using range locks that the crash no longer happens. Reviewed By: riversand963 Differential Revision: D35950376 Pulled By: hermanlee fbshipit-source-id: 8c9cae272e23e487fc139b6a8ed5b8f8f24b1570
2022-04-27 16:12:52 +00:00
// Range lock manager uses address of transaction object as TXNID
const TransactionDBOptions& db_options = txn_db_impl_->GetTxnDBOptions();
if (db_options.lock_mgr_handle &&
db_options.lock_mgr_handle->getLockManager()->IsRangeLockSupported()) {
txn_id_ = reinterpret_cast<TransactionID>(this);
} else {
txn_id_ = GenTxnID();
}
txn_state_ = STARTED;
deadlock_detect_ = txn_options.deadlock_detect;
deadlock_detect_depth_ = txn_options.deadlock_detect_depth;
write_batch_.SetMaxBytes(txn_options.max_write_batch_size);
skip_concurrency_control_ = txn_options.skip_concurrency_control;
lock_timeout_ = txn_options.lock_timeout * 1000;
if (lock_timeout_ < 0) {
// Lock timeout not set, use default
lock_timeout_ =
txn_db_impl_->GetTxnDBOptions().transaction_lock_timeout * 1000;
}
if (txn_options.expiration >= 0) {
expiration_time_ = start_time_ + txn_options.expiration * 1000;
} else {
expiration_time_ = 0;
}
if (txn_options.set_snapshot) {
SetSnapshot();
}
if (expiration_time_ > 0) {
txn_db_impl_->InsertExpirableTransaction(txn_id_, this);
}
use_only_the_last_commit_time_batch_for_recovery_ =
txn_options.use_only_the_last_commit_time_batch_for_recovery;
skip_prepare_ = txn_options.skip_prepare;
read_timestamp_ = kMaxTxnTimestamp;
commit_timestamp_ = kMaxTxnTimestamp;
}
PessimisticTransaction::~PessimisticTransaction() {
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
txn_db_impl_->UnLock(this, *tracked_locks_);
if (expiration_time_ > 0) {
txn_db_impl_->RemoveExpirableTransaction(txn_id_);
}
if (!name_.empty() && txn_state_ != COMMITTED) {
txn_db_impl_->UnregisterTransaction(this);
}
}
void PessimisticTransaction::Clear() {
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
txn_db_impl_->UnLock(this, *tracked_locks_);
TransactionBaseImpl::Clear();
}
void PessimisticTransaction::Reinitialize(
TransactionDB* txn_db, const WriteOptions& write_options,
const TransactionOptions& txn_options) {
if (!name_.empty() && txn_state_ != COMMITTED) {
txn_db_impl_->UnregisterTransaction(this);
}
TransactionBaseImpl::Reinitialize(txn_db->GetRootDB(), write_options);
Initialize(txn_options);
}
bool PessimisticTransaction::IsExpired() const {
if (expiration_time_ > 0) {
if (dbimpl_->GetSystemClock()->NowMicros() >= expiration_time_) {
// Transaction is expired.
return true;
}
}
return false;
}
WriteCommittedTxn::WriteCommittedTxn(TransactionDB* txn_db,
const WriteOptions& write_options,
const TransactionOptions& txn_options)
Add commit_timestamp and read_timestamp to Pessimistic transaction (#9537) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9537 Add `Transaction::SetReadTimestampForValidation()` and `Transaction::SetCommitTimestamp()` APIs with default implementation returning `Status::NotSupported()`. Currently, calling these two APIs do not have any effect. Also add checks to `PessimisticTransactionDB` to enforce that column families in the same db either - disable user-defined timestamp - enable 64-bit timestamp Just to clarify, a `PessimisticTransactionDB` can have some column families without timestamps as well as column families that enable timestamp. Each `PessimisticTransaction` can have two optional timestamps, `read_timestamp_` used for additional validation and `commit_timestamp_` which denotes when the transaction commits. For now, we are going to support `WriteCommittedTxn` (in a series of subsequent PRs) Once set, we do not allow decreasing `read_timestamp_`. The `commit_timestamp_` must be greater than `read_timestamp_` for each transaction and must be set before commit, unless the transaction does not involve any column family that enables user-defined timestamp. TransactionDB builds on top of RocksDB core `DB` layer. Though `DB` layer assumes that user-defined timestamps are byte arrays, `TransactionDB` uses uint64_t to store timestamps. When they are passed down, they are still interpreted as byte-arrays by `DB`. Reviewed By: ltamasi Differential Revision: D31567959 fbshipit-source-id: b0b6b69acab5d8e340cf174f33e8b09f1c3d3502
2022-02-12 04:18:06 +00:00
: PessimisticTransaction(txn_db, write_options, txn_options) {}
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
Status WriteCommittedTxn::GetForUpdate(const ReadOptions& read_options,
ColumnFamilyHandle* column_family,
const Slice& key, std::string* value,
bool exclusive, const bool do_validate) {
return GetForUpdateImpl(read_options, column_family, key, value, exclusive,
do_validate);
}
Status WriteCommittedTxn::GetForUpdate(const ReadOptions& read_options,
ColumnFamilyHandle* column_family,
const Slice& key,
PinnableSlice* pinnable_val,
bool exclusive, const bool do_validate) {
return GetForUpdateImpl(read_options, column_family, key, pinnable_val,
exclusive, do_validate);
}
template <typename TValue>
inline Status WriteCommittedTxn::GetForUpdateImpl(
const ReadOptions& read_options, ColumnFamilyHandle* column_family,
const Slice& key, TValue* value, bool exclusive, const bool do_validate) {
Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288) Summary: **Context:** The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them. **Summary** - Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros` - Fixed the default histogram in `RandomAccessFileReader` - New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader` - Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288 Test Plan: - **Stress test** - **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob) - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads. ``` ./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10) ``` ``` // BlockBasedTable rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805 rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116 rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689 // PlainTable Does not apply ``` - **Db bench 2: performance** **Read** SETUP: db with 900 files ``` ./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none ```run till convergence ``` ./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3 ``` Pre-change `readrandom [AVG 60 runs] : 21568 (± 248) ops/sec` Post-change (no regression, -0.3%) `readrandom [AVG 60 runs] : 21486 (± 236) ops/sec` **Compaction/Flush**run till convergence ``` ./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none rocksdb.sst.read.micros COUNT : 33820 rocksdb.sst.read.flush.micros COUNT : 1800 rocksdb.sst.read.compaction.micros COUNT : 32020 ``` Pre-change `fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec` Post-change (no regression, ~-0.4%) `fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec` Reviewed By: ajkr Differential Revision: D44007011 Pulled By: hx235 fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 16:07:18 +00:00
if (read_options.io_activity != Env::IOActivity::kUnknown) {
return Status::InvalidArgument(
"Cannot call GetForUpdate with `ReadOptions::io_activity` != "
"`Env::IOActivity::kUnknown`");
}
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
column_family =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(column_family);
if (!read_options.timestamp) {
const Comparator* const ucmp = column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (0 == ts_sz) {
return TransactionBaseImpl::GetForUpdate(read_options, column_family, key,
value, exclusive, do_validate);
}
} else {
Status s = db_impl_->FailIfTsMismatchCf(
column_family, *(read_options.timestamp), /*ts_for_read=*/true);
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
if (!s.ok()) {
return s;
}
}
if (!do_validate) {
return Status::InvalidArgument(
"If do_validate is false then GetForUpdate with read_timestamp is not "
"defined.");
} else if (kMaxTxnTimestamp == read_timestamp_) {
return Status::InvalidArgument("read_timestamp must be set for validation");
}
if (!read_options.timestamp) {
ReadOptions read_opts_copy = read_options;
char ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(ts_buf, read_timestamp_);
Slice ts(ts_buf, sizeof(ts_buf));
read_opts_copy.timestamp = &ts;
return TransactionBaseImpl::GetForUpdate(read_opts_copy, column_family, key,
value, exclusive, do_validate);
}
assert(read_options.timestamp);
const char* const ts_buf = read_options.timestamp->data();
assert(read_options.timestamp->size() == sizeof(kMaxTxnTimestamp));
TxnTimestamp ts = DecodeFixed64(ts_buf);
if (ts != read_timestamp_) {
return Status::InvalidArgument("Must read from the same read_timestamp");
}
return TransactionBaseImpl::GetForUpdate(read_options, column_family, key,
value, exclusive, do_validate);
}
Status WriteCommittedTxn::Put(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::Put(ColumnFamilyHandle* column_family,
const SliceParts& key, const SliceParts& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::PutUntracked(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
return Operate(
column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, &value, this]() {
Status s = GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::PutUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key,
const SliceParts& value) {
return Operate(
column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, &value, this]() {
Status s = GetBatchForWrite()->Put(column_family, key, value);
if (s.ok()) {
++num_puts_;
}
return s;
});
}
Status WriteCommittedTxn::Delete(ColumnFamilyHandle* column_family,
const Slice& key, const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::Delete(ColumnFamilyHandle* column_family,
const SliceParts& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::DeleteUntracked(ColumnFamilyHandle* column_family,
const Slice& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::DeleteUntracked(ColumnFamilyHandle* column_family,
const SliceParts& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s = GetBatchForWrite()->Delete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDelete(ColumnFamilyHandle* column_family,
const Slice& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDelete(ColumnFamilyHandle* column_family,
const SliceParts& key,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::SingleDeleteUntracked(
ColumnFamilyHandle* column_family, const Slice& key) {
return Operate(column_family, key, /*do_validate=*/false,
/*assume_tracked=*/false, [column_family, &key, this]() {
Status s =
GetBatchForWrite()->SingleDelete(column_family, key);
if (s.ok()) {
++num_deletes_;
}
return s;
});
}
Status WriteCommittedTxn::Merge(ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value,
const bool assume_tracked) {
const bool do_validate = !assume_tracked;
return Operate(column_family, key, do_validate, assume_tracked,
[column_family, &key, &value, this]() {
Status s =
GetBatchForWrite()->Merge(column_family, key, value);
if (s.ok()) {
++num_merges_;
}
return s;
});
}
template <typename TKey, typename TOperation>
Status WriteCommittedTxn::Operate(ColumnFamilyHandle* column_family,
const TKey& key, const bool do_validate,
const bool assume_tracked,
TOperation&& operation) {
Status s;
if constexpr (std::is_same_v<Slice, TKey>) {
s = TryLock(column_family, key, /*read_only=*/false, /*exclusive=*/true,
do_validate, assume_tracked);
} else if constexpr (std::is_same_v<SliceParts, TKey>) {
std::string key_buf;
Slice contiguous_key(key, &key_buf);
s = TryLock(column_family, contiguous_key, /*read_only=*/false,
/*exclusive=*/true, do_validate, assume_tracked);
}
if (!s.ok()) {
return s;
}
column_family =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(column_family);
const Comparator* const ucmp = column_family->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (ts_sz > 0) {
assert(ts_sz == sizeof(TxnTimestamp));
if (!IndexingEnabled()) {
cfs_with_ts_tracked_when_indexing_disabled_.insert(
column_family->GetID());
}
}
return operation();
}
Add commit_timestamp and read_timestamp to Pessimistic transaction (#9537) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9537 Add `Transaction::SetReadTimestampForValidation()` and `Transaction::SetCommitTimestamp()` APIs with default implementation returning `Status::NotSupported()`. Currently, calling these two APIs do not have any effect. Also add checks to `PessimisticTransactionDB` to enforce that column families in the same db either - disable user-defined timestamp - enable 64-bit timestamp Just to clarify, a `PessimisticTransactionDB` can have some column families without timestamps as well as column families that enable timestamp. Each `PessimisticTransaction` can have two optional timestamps, `read_timestamp_` used for additional validation and `commit_timestamp_` which denotes when the transaction commits. For now, we are going to support `WriteCommittedTxn` (in a series of subsequent PRs) Once set, we do not allow decreasing `read_timestamp_`. The `commit_timestamp_` must be greater than `read_timestamp_` for each transaction and must be set before commit, unless the transaction does not involve any column family that enables user-defined timestamp. TransactionDB builds on top of RocksDB core `DB` layer. Though `DB` layer assumes that user-defined timestamps are byte arrays, `TransactionDB` uses uint64_t to store timestamps. When they are passed down, they are still interpreted as byte-arrays by `DB`. Reviewed By: ltamasi Differential Revision: D31567959 fbshipit-source-id: b0b6b69acab5d8e340cf174f33e8b09f1c3d3502
2022-02-12 04:18:06 +00:00
Status WriteCommittedTxn::SetReadTimestampForValidation(TxnTimestamp ts) {
if (read_timestamp_ < kMaxTxnTimestamp && ts < read_timestamp_) {
return Status::InvalidArgument(
"Cannot decrease read timestamp for validation");
}
read_timestamp_ = ts;
return Status::OK();
}
Status WriteCommittedTxn::SetCommitTimestamp(TxnTimestamp ts) {
if (read_timestamp_ < kMaxTxnTimestamp && ts <= read_timestamp_) {
return Status::InvalidArgument(
"Cannot commit at timestamp smaller than or equal to read timestamp");
}
commit_timestamp_ = ts;
return Status::OK();
}
Status PessimisticTransaction::CommitBatch(WriteBatch* batch) {
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
if (batch && WriteBatchInternal::HasKeyWithTimestamp(*batch)) {
// CommitBatch() needs to lock the keys in the batch.
// However, the application also needs to specify the timestamp for the
// keys in batch before calling this API.
// This means timestamp order may violate the order of locking, thus
// violate the sequence number order for the same user key.
// Therefore, we disallow this operation for now.
return Status::NotSupported(
"Batch to commit includes timestamp assigned before locking");
}
std::unique_ptr<LockTracker> keys_to_unlock(lock_tracker_factory_.Create());
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
Status s = LockBatch(batch, keys_to_unlock.get());
if (!s.ok()) {
return s;
}
bool can_commit = false;
if (IsExpired()) {
s = Status::Expired();
} else if (expiration_time_ > 0) {
TransactionState expected = STARTED;
can_commit = std::atomic_compare_exchange_strong(&txn_state_, &expected,
AWAITING_COMMIT);
} else if (txn_state_ == STARTED) {
// lock stealing is not a concern
can_commit = true;
}
if (can_commit) {
txn_state_.store(AWAITING_COMMIT);
s = CommitBatchInternal(batch);
if (s.ok()) {
txn_state_.store(COMMITTED);
}
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
txn_db_impl_->UnLock(this, *keys_to_unlock);
return s;
}
Status PessimisticTransaction::Prepare() {
if (name_.empty()) {
return Status::InvalidArgument(
"Cannot prepare a transaction that has not been named.");
}
if (IsExpired()) {
return Status::Expired();
}
Status s;
bool can_prepare = false;
if (expiration_time_ > 0) {
// must concern ourselves with expiraton and/or lock stealing
// need to compare/exchange bc locks could be stolen under us here
TransactionState expected = STARTED;
can_prepare = std::atomic_compare_exchange_strong(&txn_state_, &expected,
AWAITING_PREPARE);
} else if (txn_state_ == STARTED) {
// expiration and lock stealing is not possible
txn_state_.store(AWAITING_PREPARE);
can_prepare = true;
}
if (can_prepare) {
// transaction can't expire after preparation
expiration_time_ = 0;
assert(log_number_ == 0 ||
txn_db_impl_->GetTxnDBOptions().write_policy == WRITE_UNPREPARED);
s = PrepareInternal();
if (s.ok()) {
txn_state_.store(PREPARED);
}
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else if (txn_state_ == PREPARED) {
s = Status::InvalidArgument("Transaction has already been prepared.");
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("Transaction has already been committed.");
} else if (txn_state_ == ROLLEDBACK) {
s = Status::InvalidArgument("Transaction has already been rolledback.");
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
return s;
}
Status WriteCommittedTxn::PrepareInternal() {
WriteOptions write_options = write_options_;
write_options.disableWAL = false;
auto s = WriteBatchInternal::MarkEndPrepare(GetWriteBatch()->GetWriteBatch(),
name_);
assert(s.ok());
class MarkLogCallback : public PreReleaseCallback {
public:
MarkLogCallback(DBImpl* db, bool two_write_queues)
: db_(db), two_write_queues_(two_write_queues) {
(void)two_write_queues_; // to silence unused private field warning
}
virtual Status Callback(SequenceNumber, bool is_mem_disabled,
uint64_t log_number, size_t /*index*/,
size_t /*total*/) override {
#ifdef NDEBUG
(void)is_mem_disabled;
#endif
assert(log_number != 0);
assert(!two_write_queues_ || is_mem_disabled); // implies the 2nd queue
db_->logs_with_prep_tracker()->MarkLogAsContainingPrepSection(log_number);
return Status::OK();
}
private:
DBImpl* db_;
bool two_write_queues_;
} mark_log_callback(db_impl_,
db_impl_->immutable_db_options().two_write_queues);
WriteCallback* const kNoWriteCallback = nullptr;
const uint64_t kRefNoLog = 0;
const bool kDisableMemtable = true;
SequenceNumber* const KIgnoreSeqUsed = nullptr;
const size_t kNoBatchCount = 0;
s = db_impl_->WriteImpl(write_options, GetWriteBatch()->GetWriteBatch(),
kNoWriteCallback, &log_number_, kRefNoLog,
kDisableMemtable, KIgnoreSeqUsed, kNoBatchCount,
&mark_log_callback);
return s;
}
Status PessimisticTransaction::Commit() {
bool commit_without_prepare = false;
bool commit_prepared = false;
if (IsExpired()) {
return Status::Expired();
}
if (expiration_time_ > 0) {
// we must atomicaly compare and exchange the state here because at
// this state in the transaction it is possible for another thread
// to change our state out from under us in the even that we expire and have
// our locks stolen. In this case the only valid state is STARTED because
// a state of PREPARED would have a cleared expiration_time_.
TransactionState expected = STARTED;
commit_without_prepare = std::atomic_compare_exchange_strong(
&txn_state_, &expected, AWAITING_COMMIT);
TEST_SYNC_POINT("TransactionTest::ExpirableTransactionDataRace:1");
} else if (txn_state_ == PREPARED) {
// expiration and lock stealing is not a concern
commit_prepared = true;
} else if (txn_state_ == STARTED) {
// expiration and lock stealing is not a concern
if (skip_prepare_) {
commit_without_prepare = true;
} else {
return Status::TxnNotPrepared();
}
}
Status s;
if (commit_without_prepare) {
assert(!commit_prepared);
if (WriteBatchInternal::Count(GetCommitTimeWriteBatch()) > 0) {
s = Status::InvalidArgument(
"Commit-time batch contains values that will not be committed.");
} else {
txn_state_.store(AWAITING_COMMIT);
if (log_number_ > 0) {
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
}
s = CommitWithoutPrepareInternal();
if (!name_.empty()) {
txn_db_impl_->UnregisterTransaction(this);
}
Clear();
if (s.ok()) {
txn_state_.store(COMMITTED);
}
}
} else if (commit_prepared) {
txn_state_.store(AWAITING_COMMIT);
s = CommitInternal();
if (!s.ok()) {
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 21:06:43 +00:00
ROCKS_LOG_WARN(db_impl_->immutable_db_options().info_log,
"Commit write failed");
return s;
}
// FindObsoleteFiles must now look to the memtables
// to determine what prep logs must be kept around,
// not the prep section heap.
assert(log_number_ > 0);
Skip deleted WALs during recovery Summary: This patch record min log number to keep to the manifest while flushing SST files to ignore them and any WAL older than them during recovery. This is to avoid scenarios when we have a gap between the WAL files are fed to the recovery procedure. The gap could happen by for example out-of-order WAL deletion. Such gap could cause problems in 2PC recovery where the prepared and commit entry are placed into two separate WAL and gap in the WALs could result into not processing the WAL with the commit entry and hence breaking the 2PC recovery logic. Before the commit, for 2PC case, we determined which log number to keep in FindObsoleteFiles(). We looked at the earliest logs with outstanding prepare entries, or prepare entries whose respective commit or abort are in memtable. With the commit, the same calculation is done while we apply the SST flush. Just before installing the flush file, we precompute the earliest log file to keep after the flush finishes using the same logic (but skipping the memtables just flushed), record this information to the manifest entry for this new flushed SST file. This pre-computed value is also remembered in memory, and will later be used to determine whether a log file can be deleted. This value is unlikely to change until next flush because the commit entry will stay in memtable. (In WritePrepared, we could have removed the older log files as soon as all prepared entries are committed. It's not yet done anyway. Even if we do it, the only thing we loss with this new approach is earlier log deletion between two flushes, which does not guarantee to happen anyway because the obsolete file clean-up function is only executed after flush or compaction) This min log number to keep is stored in the manifest using the safely-ignore customized field of AddFile entry, in order to guarantee that the DB generated using newer release can be opened by previous releases no older than 4.2. Closes https://github.com/facebook/rocksdb/pull/3765 Differential Revision: D7747618 Pulled By: siying fbshipit-source-id: d00c92105b4f83852e9754a1b70d6b64cb590729
2018-05-03 22:35:11 +00:00
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
txn_db_impl_->UnregisterTransaction(this);
Clear();
txn_state_.store(COMMITTED);
} else if (txn_state_ == LOCKS_STOLEN) {
s = Status::Expired();
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("Transaction has already been committed.");
} else if (txn_state_ == ROLLEDBACK) {
s = Status::InvalidArgument("Transaction has already been rolledback.");
} else {
s = Status::InvalidArgument("Transaction is not in state for commit.");
}
return s;
}
Status WriteCommittedTxn::CommitWithoutPrepareInternal() {
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
WriteBatchWithIndex* wbwi = GetWriteBatch();
assert(wbwi);
WriteBatch* wb = wbwi->GetWriteBatch();
assert(wb);
const bool needs_ts = WriteBatchInternal::HasKeyWithTimestamp(*wb);
if (needs_ts && commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must assign a commit timestamp");
}
if (needs_ts) {
assert(commit_timestamp_ != kMaxTxnTimestamp);
char commit_ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(commit_ts_buf, commit_timestamp_);
Slice commit_ts(commit_ts_buf, sizeof(commit_ts_buf));
Status s =
wb->UpdateTimestamps(commit_ts, [wbwi, this](uint32_t cf) -> size_t {
auto cf_iter = cfs_with_ts_tracked_when_indexing_disabled_.find(cf);
if (cf_iter != cfs_with_ts_tracked_when_indexing_disabled_.end()) {
return sizeof(kMaxTxnTimestamp);
}
const Comparator* ucmp =
WriteBatchWithIndexInternal::GetUserComparator(*wbwi, cf);
return ucmp ? ucmp->timestamp_size()
: std::numeric_limits<uint64_t>::max();
});
if (!s.ok()) {
return s;
}
}
uint64_t seq_used = kMaxSequenceNumber;
Snapshots with user-specified timestamps (#9879) Summary: In RocksDB, keys are associated with (internal) sequence numbers which denote when the keys are written to the database. Sequence numbers in different RocksDB instances are unrelated, thus not comparable. It is nice if we can associate sequence numbers with their corresponding actual timestamps. One thing we can do is to support user-defined timestamp, which allows the applications to specify the format of custom timestamps and encode a timestamp with each key. More details can be found at https://github.com/facebook/rocksdb/wiki/User-defined-Timestamp-%28Experimental%29. This PR provides a different but complementary approach. We can associate rocksdb snapshots (defined in https://github.com/facebook/rocksdb/blob/7.2.fb/include/rocksdb/snapshot.h#L20) with **user-specified** timestamps. Since a snapshot is essentially an object representing a sequence number, this PR establishes a bi-directional mapping between sequence numbers and timestamps. In the past, snapshots are usually taken by readers. The current super-version is grabbed, and a `rocksdb::Snapshot` object is created with the last published sequence number of the super-version. You can see that the reader actually has no good idea of what timestamp to assign to this snapshot, because by the time the `GetSnapshot()` is called, an arbitrarily long period of time may have already elapsed since the last write, which is when the last published sequence number is written. This observation motivates the creation of "timestamped" snapshots on the write path. Currently, this functionality is exposed only to the layer of `TransactionDB`. Application can tell RocksDB to create a snapshot when a transaction commits, effectively associating the last sequence number with a timestamp. It is also assumed that application will ensure any two snapshots with timestamps should satisfy the following: ``` snapshot1.seq < snapshot2.seq iff. snapshot1.ts < snapshot2.ts ``` If the application can guarantee that when a reader takes a timestamped snapshot, there is no active writes going on in the database, then we also allow the user to use a new API `TransactionDB::CreateTimestampedSnapshot()` to create a snapshot with associated timestamp. Code example ```cpp // Create a timestamped snapshot when committing transaction. txn->SetCommitTimestamp(100); txn->SetSnapshotOnNextOperation(); txn->Commit(); // A wrapper API for convenience Status Transaction::CommitAndTryCreateSnapshot( std::shared_ptr<TransactionNotifier> notifier, TxnTimestamp ts, std::shared_ptr<const Snapshot>* ret); // Create a timestamped snapshot if caller guarantees no concurrent writes std::pair<Status, std::shared_ptr<const Snapshot>> snapshot = txn_db->CreateTimestampedSnapshot(100); ``` The snapshots created in this way will be managed by RocksDB with ref-counting and potentially shared with other readers. We provide the following APIs for readers to retrieve a snapshot given a timestamp. ```cpp // Return the timestamped snapshot correponding to given timestamp. If ts is // kMaxTxnTimestamp, then we return the latest timestamped snapshot if present. // Othersise, we return the snapshot whose timestamp is equal to `ts`. If no // such snapshot exists, then we return null. std::shared_ptr<const Snapshot> TransactionDB::GetTimestampedSnapshot(TxnTimestamp ts) const; // Return the latest timestamped snapshot if present. std::shared_ptr<const Snapshot> TransactionDB::GetLatestTimestampedSnapshot() const; ``` We also provide two additional APIs for stats collection and reporting purposes. ```cpp Status TransactionDB::GetAllTimestampedSnapshots( std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; // Return timestamped snapshots whose timestamps fall in [ts_lb, ts_ub) and store them in `snapshots`. Status TransactionDB::GetTimestampedSnapshots( TxnTimestamp ts_lb, TxnTimestamp ts_ub, std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; ``` To prevent the number of timestamped snapshots from growing infinitely, we provide the following API to release timestamped snapshots whose timestamps are older than or equal to a given threshold. ```cpp void TransactionDB::ReleaseTimestampedSnapshotsOlderThan(TxnTimestamp ts); ``` Before shutdown, RocksDB will release all timestamped snapshots. Comparison with user-defined timestamp and how they can be combined: User-defined timestamp persists every key with a timestamp, while timestamped snapshots maintain a volatile mapping between snapshots (sequence numbers) and timestamps. Different internal keys with the same user key but different timestamps will be treated as different by compaction, thus a newer version will not hide older versions (with smaller timestamps) unless they are eligible for garbage collection. In contrast, taking a timestamped snapshot at a certain sequence number and timestamp prevents all the keys visible in this snapshot from been dropped by compaction. Here, visible means (seq < snapshot and most recent). The timestamped snapshot supports the semantics of reading at an exact point in time. Timestamped snapshots can also be used with user-defined timestamp. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9879 Test Plan: ``` make check TEST_TMPDIR=/dev/shm make crash_test_with_txn ``` Reviewed By: siying Differential Revision: D35783919 Pulled By: riversand963 fbshipit-source-id: 586ad905e169189e19d3bfc0cb0177a7239d1bd4
2022-06-10 23:07:03 +00:00
SnapshotCreationCallback snapshot_creation_cb(db_impl_, commit_timestamp_,
snapshot_notifier_, snapshot_);
PostMemTableCallback* post_mem_cb = nullptr;
if (snapshot_needed_) {
if (commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must set transaction commit timestamp");
} else {
post_mem_cb = &snapshot_creation_cb;
}
}
auto s = db_impl_->WriteImpl(write_options_, wb,
/*callback*/ nullptr, /*log_used*/ nullptr,
/*log_ref*/ 0, /*disable_memtable*/ false,
&seq_used, /*batch_cnt=*/0,
/*pre_release_callback=*/nullptr, post_mem_cb);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status WriteCommittedTxn::CommitBatchInternal(WriteBatch* batch, size_t) {
uint64_t seq_used = kMaxSequenceNumber;
auto s = db_impl_->WriteImpl(write_options_, batch, /*callback*/ nullptr,
/*log_used*/ nullptr, /*log_ref*/ 0,
/*disable_memtable*/ false, &seq_used);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status WriteCommittedTxn::CommitInternal() {
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
WriteBatchWithIndex* wbwi = GetWriteBatch();
assert(wbwi);
WriteBatch* wb = wbwi->GetWriteBatch();
assert(wb);
const bool needs_ts = WriteBatchInternal::HasKeyWithTimestamp(*wb);
if (needs_ts && commit_timestamp_ == kMaxTxnTimestamp) {
return Status::InvalidArgument("Must assign a commit timestamp");
}
// We take the commit-time batch and append the Commit marker.
// The Memtable will ignore the Commit marker in non-recovery mode
WriteBatch* working_batch = GetCommitTimeWriteBatch();
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
Status s;
if (!needs_ts) {
s = WriteBatchInternal::MarkCommit(working_batch, name_);
} else {
assert(commit_timestamp_ != kMaxTxnTimestamp);
char commit_ts_buf[sizeof(kMaxTxnTimestamp)];
EncodeFixed64(commit_ts_buf, commit_timestamp_);
Slice commit_ts(commit_ts_buf, sizeof(commit_ts_buf));
s = WriteBatchInternal::MarkCommitWithTimestamp(working_batch, name_,
commit_ts);
if (s.ok()) {
s = wb->UpdateTimestamps(commit_ts, [wbwi, this](uint32_t cf) -> size_t {
if (cfs_with_ts_tracked_when_indexing_disabled_.find(cf) !=
cfs_with_ts_tracked_when_indexing_disabled_.end()) {
return sizeof(kMaxTxnTimestamp);
}
const Comparator* ucmp =
WriteBatchWithIndexInternal::GetUserComparator(*wbwi, cf);
return ucmp ? ucmp->timestamp_size()
: std::numeric_limits<uint64_t>::max();
});
}
}
if (!s.ok()) {
return s;
}
// any operations appended to this working_batch will be ignored from WAL
working_batch->MarkWalTerminationPoint();
// insert prepared batch into Memtable only skipping WAL.
// Memtable will ignore BeginPrepare/EndPrepare markers
// in non recovery mode and simply insert the values
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
s = WriteBatchInternal::Append(working_batch, wb);
assert(s.ok());
uint64_t seq_used = kMaxSequenceNumber;
Snapshots with user-specified timestamps (#9879) Summary: In RocksDB, keys are associated with (internal) sequence numbers which denote when the keys are written to the database. Sequence numbers in different RocksDB instances are unrelated, thus not comparable. It is nice if we can associate sequence numbers with their corresponding actual timestamps. One thing we can do is to support user-defined timestamp, which allows the applications to specify the format of custom timestamps and encode a timestamp with each key. More details can be found at https://github.com/facebook/rocksdb/wiki/User-defined-Timestamp-%28Experimental%29. This PR provides a different but complementary approach. We can associate rocksdb snapshots (defined in https://github.com/facebook/rocksdb/blob/7.2.fb/include/rocksdb/snapshot.h#L20) with **user-specified** timestamps. Since a snapshot is essentially an object representing a sequence number, this PR establishes a bi-directional mapping between sequence numbers and timestamps. In the past, snapshots are usually taken by readers. The current super-version is grabbed, and a `rocksdb::Snapshot` object is created with the last published sequence number of the super-version. You can see that the reader actually has no good idea of what timestamp to assign to this snapshot, because by the time the `GetSnapshot()` is called, an arbitrarily long period of time may have already elapsed since the last write, which is when the last published sequence number is written. This observation motivates the creation of "timestamped" snapshots on the write path. Currently, this functionality is exposed only to the layer of `TransactionDB`. Application can tell RocksDB to create a snapshot when a transaction commits, effectively associating the last sequence number with a timestamp. It is also assumed that application will ensure any two snapshots with timestamps should satisfy the following: ``` snapshot1.seq < snapshot2.seq iff. snapshot1.ts < snapshot2.ts ``` If the application can guarantee that when a reader takes a timestamped snapshot, there is no active writes going on in the database, then we also allow the user to use a new API `TransactionDB::CreateTimestampedSnapshot()` to create a snapshot with associated timestamp. Code example ```cpp // Create a timestamped snapshot when committing transaction. txn->SetCommitTimestamp(100); txn->SetSnapshotOnNextOperation(); txn->Commit(); // A wrapper API for convenience Status Transaction::CommitAndTryCreateSnapshot( std::shared_ptr<TransactionNotifier> notifier, TxnTimestamp ts, std::shared_ptr<const Snapshot>* ret); // Create a timestamped snapshot if caller guarantees no concurrent writes std::pair<Status, std::shared_ptr<const Snapshot>> snapshot = txn_db->CreateTimestampedSnapshot(100); ``` The snapshots created in this way will be managed by RocksDB with ref-counting and potentially shared with other readers. We provide the following APIs for readers to retrieve a snapshot given a timestamp. ```cpp // Return the timestamped snapshot correponding to given timestamp. If ts is // kMaxTxnTimestamp, then we return the latest timestamped snapshot if present. // Othersise, we return the snapshot whose timestamp is equal to `ts`. If no // such snapshot exists, then we return null. std::shared_ptr<const Snapshot> TransactionDB::GetTimestampedSnapshot(TxnTimestamp ts) const; // Return the latest timestamped snapshot if present. std::shared_ptr<const Snapshot> TransactionDB::GetLatestTimestampedSnapshot() const; ``` We also provide two additional APIs for stats collection and reporting purposes. ```cpp Status TransactionDB::GetAllTimestampedSnapshots( std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; // Return timestamped snapshots whose timestamps fall in [ts_lb, ts_ub) and store them in `snapshots`. Status TransactionDB::GetTimestampedSnapshots( TxnTimestamp ts_lb, TxnTimestamp ts_ub, std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; ``` To prevent the number of timestamped snapshots from growing infinitely, we provide the following API to release timestamped snapshots whose timestamps are older than or equal to a given threshold. ```cpp void TransactionDB::ReleaseTimestampedSnapshotsOlderThan(TxnTimestamp ts); ``` Before shutdown, RocksDB will release all timestamped snapshots. Comparison with user-defined timestamp and how they can be combined: User-defined timestamp persists every key with a timestamp, while timestamped snapshots maintain a volatile mapping between snapshots (sequence numbers) and timestamps. Different internal keys with the same user key but different timestamps will be treated as different by compaction, thus a newer version will not hide older versions (with smaller timestamps) unless they are eligible for garbage collection. In contrast, taking a timestamped snapshot at a certain sequence number and timestamp prevents all the keys visible in this snapshot from been dropped by compaction. Here, visible means (seq < snapshot and most recent). The timestamped snapshot supports the semantics of reading at an exact point in time. Timestamped snapshots can also be used with user-defined timestamp. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9879 Test Plan: ``` make check TEST_TMPDIR=/dev/shm make crash_test_with_txn ``` Reviewed By: siying Differential Revision: D35783919 Pulled By: riversand963 fbshipit-source-id: 586ad905e169189e19d3bfc0cb0177a7239d1bd4
2022-06-10 23:07:03 +00:00
SnapshotCreationCallback snapshot_creation_cb(db_impl_, commit_timestamp_,
snapshot_notifier_, snapshot_);
PostMemTableCallback* post_mem_cb = nullptr;
if (snapshot_needed_) {
if (commit_timestamp_ == kMaxTxnTimestamp) {
s = Status::InvalidArgument("Must set transaction commit timestamp");
return s;
} else {
post_mem_cb = &snapshot_creation_cb;
}
}
s = db_impl_->WriteImpl(write_options_, working_batch, /*callback*/ nullptr,
/*log_used*/ nullptr, /*log_ref*/ log_number_,
Snapshots with user-specified timestamps (#9879) Summary: In RocksDB, keys are associated with (internal) sequence numbers which denote when the keys are written to the database. Sequence numbers in different RocksDB instances are unrelated, thus not comparable. It is nice if we can associate sequence numbers with their corresponding actual timestamps. One thing we can do is to support user-defined timestamp, which allows the applications to specify the format of custom timestamps and encode a timestamp with each key. More details can be found at https://github.com/facebook/rocksdb/wiki/User-defined-Timestamp-%28Experimental%29. This PR provides a different but complementary approach. We can associate rocksdb snapshots (defined in https://github.com/facebook/rocksdb/blob/7.2.fb/include/rocksdb/snapshot.h#L20) with **user-specified** timestamps. Since a snapshot is essentially an object representing a sequence number, this PR establishes a bi-directional mapping between sequence numbers and timestamps. In the past, snapshots are usually taken by readers. The current super-version is grabbed, and a `rocksdb::Snapshot` object is created with the last published sequence number of the super-version. You can see that the reader actually has no good idea of what timestamp to assign to this snapshot, because by the time the `GetSnapshot()` is called, an arbitrarily long period of time may have already elapsed since the last write, which is when the last published sequence number is written. This observation motivates the creation of "timestamped" snapshots on the write path. Currently, this functionality is exposed only to the layer of `TransactionDB`. Application can tell RocksDB to create a snapshot when a transaction commits, effectively associating the last sequence number with a timestamp. It is also assumed that application will ensure any two snapshots with timestamps should satisfy the following: ``` snapshot1.seq < snapshot2.seq iff. snapshot1.ts < snapshot2.ts ``` If the application can guarantee that when a reader takes a timestamped snapshot, there is no active writes going on in the database, then we also allow the user to use a new API `TransactionDB::CreateTimestampedSnapshot()` to create a snapshot with associated timestamp. Code example ```cpp // Create a timestamped snapshot when committing transaction. txn->SetCommitTimestamp(100); txn->SetSnapshotOnNextOperation(); txn->Commit(); // A wrapper API for convenience Status Transaction::CommitAndTryCreateSnapshot( std::shared_ptr<TransactionNotifier> notifier, TxnTimestamp ts, std::shared_ptr<const Snapshot>* ret); // Create a timestamped snapshot if caller guarantees no concurrent writes std::pair<Status, std::shared_ptr<const Snapshot>> snapshot = txn_db->CreateTimestampedSnapshot(100); ``` The snapshots created in this way will be managed by RocksDB with ref-counting and potentially shared with other readers. We provide the following APIs for readers to retrieve a snapshot given a timestamp. ```cpp // Return the timestamped snapshot correponding to given timestamp. If ts is // kMaxTxnTimestamp, then we return the latest timestamped snapshot if present. // Othersise, we return the snapshot whose timestamp is equal to `ts`. If no // such snapshot exists, then we return null. std::shared_ptr<const Snapshot> TransactionDB::GetTimestampedSnapshot(TxnTimestamp ts) const; // Return the latest timestamped snapshot if present. std::shared_ptr<const Snapshot> TransactionDB::GetLatestTimestampedSnapshot() const; ``` We also provide two additional APIs for stats collection and reporting purposes. ```cpp Status TransactionDB::GetAllTimestampedSnapshots( std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; // Return timestamped snapshots whose timestamps fall in [ts_lb, ts_ub) and store them in `snapshots`. Status TransactionDB::GetTimestampedSnapshots( TxnTimestamp ts_lb, TxnTimestamp ts_ub, std::vector<std::shared_ptr<const Snapshot>>& snapshots) const; ``` To prevent the number of timestamped snapshots from growing infinitely, we provide the following API to release timestamped snapshots whose timestamps are older than or equal to a given threshold. ```cpp void TransactionDB::ReleaseTimestampedSnapshotsOlderThan(TxnTimestamp ts); ``` Before shutdown, RocksDB will release all timestamped snapshots. Comparison with user-defined timestamp and how they can be combined: User-defined timestamp persists every key with a timestamp, while timestamped snapshots maintain a volatile mapping between snapshots (sequence numbers) and timestamps. Different internal keys with the same user key but different timestamps will be treated as different by compaction, thus a newer version will not hide older versions (with smaller timestamps) unless they are eligible for garbage collection. In contrast, taking a timestamped snapshot at a certain sequence number and timestamp prevents all the keys visible in this snapshot from been dropped by compaction. Here, visible means (seq < snapshot and most recent). The timestamped snapshot supports the semantics of reading at an exact point in time. Timestamped snapshots can also be used with user-defined timestamp. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9879 Test Plan: ``` make check TEST_TMPDIR=/dev/shm make crash_test_with_txn ``` Reviewed By: siying Differential Revision: D35783919 Pulled By: riversand963 fbshipit-source-id: 586ad905e169189e19d3bfc0cb0177a7239d1bd4
2022-06-10 23:07:03 +00:00
/*disable_memtable*/ false, &seq_used,
/*batch_cnt=*/0, /*pre_release_callback=*/nullptr,
post_mem_cb);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
if (s.ok()) {
SetId(seq_used);
}
return s;
}
Status PessimisticTransaction::Rollback() {
Status s;
if (txn_state_ == PREPARED) {
txn_state_.store(AWAITING_ROLLBACK);
s = RollbackInternal();
if (s.ok()) {
// we do not need to keep our prepared section around
assert(log_number_ > 0);
Skip deleted WALs during recovery Summary: This patch record min log number to keep to the manifest while flushing SST files to ignore them and any WAL older than them during recovery. This is to avoid scenarios when we have a gap between the WAL files are fed to the recovery procedure. The gap could happen by for example out-of-order WAL deletion. Such gap could cause problems in 2PC recovery where the prepared and commit entry are placed into two separate WAL and gap in the WALs could result into not processing the WAL with the commit entry and hence breaking the 2PC recovery logic. Before the commit, for 2PC case, we determined which log number to keep in FindObsoleteFiles(). We looked at the earliest logs with outstanding prepare entries, or prepare entries whose respective commit or abort are in memtable. With the commit, the same calculation is done while we apply the SST flush. Just before installing the flush file, we precompute the earliest log file to keep after the flush finishes using the same logic (but skipping the memtables just flushed), record this information to the manifest entry for this new flushed SST file. This pre-computed value is also remembered in memory, and will later be used to determine whether a log file can be deleted. This value is unlikely to change until next flush because the commit entry will stay in memtable. (In WritePrepared, we could have removed the older log files as soon as all prepared entries are committed. It's not yet done anyway. Even if we do it, the only thing we loss with this new approach is earlier log deletion between two flushes, which does not guarantee to happen anyway because the obsolete file clean-up function is only executed after flush or compaction) This min log number to keep is stored in the manifest using the safely-ignore customized field of AddFile entry, in order to guarantee that the DB generated using newer release can be opened by previous releases no older than 4.2. Closes https://github.com/facebook/rocksdb/pull/3765 Differential Revision: D7747618 Pulled By: siying fbshipit-source-id: d00c92105b4f83852e9754a1b70d6b64cb590729
2018-05-03 22:35:11 +00:00
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
Clear();
txn_state_.store(ROLLEDBACK);
}
} else if (txn_state_ == STARTED) {
if (log_number_ > 0) {
assert(txn_db_impl_->GetTxnDBOptions().write_policy == WRITE_UNPREPARED);
assert(GetId() > 0);
s = RollbackInternal();
if (s.ok()) {
dbimpl_->logs_with_prep_tracker()->MarkLogAsHavingPrepSectionFlushed(
log_number_);
}
}
// prepare couldn't have taken place
Clear();
} else if (txn_state_ == COMMITTED) {
s = Status::InvalidArgument("This transaction has already been committed.");
} else {
s = Status::InvalidArgument(
"Two phase transaction is not in state for rollback.");
}
return s;
}
Status WriteCommittedTxn::RollbackInternal() {
WriteBatch rollback_marker;
auto s = WriteBatchInternal::MarkRollback(&rollback_marker, name_);
assert(s.ok());
s = db_impl_->WriteImpl(write_options_, &rollback_marker);
return s;
}
Status PessimisticTransaction::RollbackToSavePoint() {
if (txn_state_ != STARTED) {
return Status::InvalidArgument("Transaction is beyond state for rollback.");
}
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
if (save_points_ != nullptr && !save_points_->empty()) {
// Unlock any keys locked since last transaction
auto& save_point_tracker = *save_points_->top().new_locks_;
std::unique_ptr<LockTracker> t(
tracked_locks_->GetTrackedLocksSinceSavePoint(save_point_tracker));
if (t) {
txn_db_impl_->UnLock(this, *t);
}
}
return TransactionBaseImpl::RollbackToSavePoint();
}
// Lock all keys in this batch.
// On success, caller should unlock keys_to_unlock
Status PessimisticTransaction::LockBatch(WriteBatch* batch,
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
LockTracker* keys_to_unlock) {
Support user-defined timestamps in write-committed txns (#9629) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629 Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are locked upon first operation that writes the key or has the intention of writing. For example, `PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`, `PessimisticTransaction::SingleDelete()` will write to or delete a key, while `PessimisticTransaction::GetForUpdate()` is used by application to indicate to RocksDB that the transaction has the intention of performing write operation later in the same transaction. Pessimistic transactions support two-phase commit (2PC). A transaction can be `Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once `Prepare()` succeeds, the transaction has acquired the necessary resources to commit. The resources include locks, persistence of WAL, etc. Write-committed transaction is the default pessimistic transaction implementation. In RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare section. `Commit()` will write a commit marker to the WAL and then write data to the memtables. While writing to the memtables, different keys in the transaction's write batch will be assigned different sequence numbers in ascending order. Until commit/rollback, the transaction holds locks on the keys so that no other transaction can write to the same keys. Furthermore, the keys' sequence numbers represent the order in which they are committed and should be made visible. This is convenient for us to implement support for user-defined timestamps. Since column families with and without timestamps can co-exist in the same database, a transaction may or may not involve timestamps. Based on this observation, we add two optional members to each `PessimisticTransaction`, `read_timestamp_` and `commit_timestamp_`. If no key in the transaction's write batch has timestamp, then setting these two variables do not have any effect. For the rest of this commit, we discuss only the cases when these two variables are meaningful. read_timestamp_ is used mainly for validation, and should be set before first call to `GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls `TryLock()` that can verify if another transaction has written the same key since `read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed written the same key, then validation fails, and RocksDB allows this transaction to refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()` with a different timestamp to read, but the result of the read should not be used to determine data that will be written later. commit_timestamp_ must be set after finishing writing and before transaction commit. This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after prepare phase succeeds. We currently require that the commit timestamp be chosen after all keys are locked. This means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`, `PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`, etc. will return non-ok status because they specify timestamps before locking the keys. Users are also prompted to use the `Transaction` APIs when they receive the non-ok status. Reviewed By: ltamasi Differential Revision: D31822445 fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-09 00:20:59 +00:00
if (!batch) {
return Status::InvalidArgument("batch is nullptr");
}
class Handler : public WriteBatch::Handler {
public:
// Sorted map of column_family_id to sorted set of keys.
// Since LockBatch() always locks keys in sorted order, it cannot deadlock
// with itself. We're not using a comparator here since it doesn't matter
// what the sorting is as long as it's consistent.
std::map<uint32_t, std::set<std::string>> keys_;
Handler() {}
void RecordKey(uint32_t column_family_id, const Slice& key) {
std::string key_str = key.ToString();
auto& cfh_keys = keys_[column_family_id];
auto iter = cfh_keys.find(key_str);
if (iter == cfh_keys.end()) {
// key not yet seen, store it.
cfh_keys.insert({std::move(key_str)});
}
}
Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& /* unused */) override {
RecordKey(column_family_id, key);
return Status::OK();
}
Status MergeCF(uint32_t column_family_id, const Slice& key,
const Slice& /* unused */) override {
RecordKey(column_family_id, key);
return Status::OK();
}
Status DeleteCF(uint32_t column_family_id, const Slice& key) override {
RecordKey(column_family_id, key);
return Status::OK();
}
};
// Iterating on this handler will add all keys in this batch into keys
Handler handler;
Status s = batch->Iterate(&handler);
if (!s.ok()) {
return s;
}
// Attempt to lock all keys
for (const auto& cf_iter : handler.keys_) {
uint32_t cfh_id = cf_iter.first;
auto& cfh_keys = cf_iter.second;
for (const auto& key_iter : cfh_keys) {
const std::string& key = key_iter;
s = txn_db_impl_->TryLock(this, cfh_id, key, true /* exclusive */);
if (!s.ok()) {
break;
}
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
PointLockRequest r;
r.column_family_id = cfh_id;
r.key = key;
r.seq = kMaxSequenceNumber;
r.read_only = false;
r.exclusive = true;
keys_to_unlock->Track(r);
}
if (!s.ok()) {
break;
}
}
if (!s.ok()) {
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
txn_db_impl_->UnLock(this, *keys_to_unlock);
}
return s;
}
// Attempt to lock this key.
// Returns OK if the key has been successfully locked. Non-ok, otherwise.
// If check_shapshot is true and this transaction has a snapshot set,
// this key will only be locked if there have been no writes to this key since
// the snapshot time.
Status PessimisticTransaction::TryLock(ColumnFamilyHandle* column_family,
const Slice& key, bool read_only,
bool exclusive, const bool do_validate,
const bool assume_tracked) {
assert(!assume_tracked || !do_validate);
Status s;
if (UNLIKELY(skip_concurrency_control_)) {
return s;
}
uint32_t cfh_id = GetColumnFamilyID(column_family);
std::string key_str = key.ToString();
PointLockStatus status;
bool lock_upgrade;
bool previously_locked;
if (tracked_locks_->IsPointLockSupported()) {
status = tracked_locks_->GetPointLockStatus(cfh_id, key_str);
previously_locked = status.locked;
lock_upgrade = previously_locked && exclusive && !status.exclusive;
} else {
// If the record is tracked, we can assume it was locked, too.
previously_locked = assume_tracked;
status.locked = false;
lock_upgrade = false;
}
// Lock this key if this transactions hasn't already locked it or we require
// an upgrade.
if (!previously_locked || lock_upgrade) {
s = txn_db_impl_->TryLock(this, cfh_id, key_str, exclusive);
}
const ColumnFamilyHandle* const cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
SetSnapshotIfNeeded();
// Even though we do not care about doing conflict checking for this write,
// we still need to take a lock to make sure we do not cause a conflict with
// some other write. However, we do not need to check if there have been
// any writes since this transaction's snapshot.
// TODO(agiardullo): could optimize by supporting shared txn locks in the
// future.
Replace tracked_keys with a new LockTracker interface in TransactionDB (#7013) Summary: We're going to support more locking protocols such as range lock in transaction. However, in current design, `TransactionBase` has a member `tracked_keys` which assumes that point lock (lock a single key) is used, and is used in snapshot checking (isolation protocol). When using range lock, we may use read committed instead of snapshot checking as the isolation protocol. The most significant usage scenarios of `tracked_keys` are: 1. pessimistic transaction uses it to track the locked keys, and unlock these keys when commit or rollback. 2. optimistic transaction does not lock keys upfront, it only tracks the lock intentions in tracked_keys, and do write conflict checking when commit. 3. each `SavePoint` tracks the keys that are locked since the `SavePoint`, `RollbackToSavePoint` or `PopSavePoint` relies on both the tracked keys in `SavePoint`s and `tracked_keys`. Based on these scenarios, if we can abstract out a `LockTracker` interface to hold a set of tracked locks (can be keys or key ranges), and have methods that can be composed together to implement the scenarios, then `tracked_keys` can be an internal data structure of one implementation of `LockTracker`. See `utilities/transactions/lock/lock_tracker.h` for the detailed interface design, and `utilities/transactions/lock/point_lock_tracker.cc` for the implementation. In the future, a `RangeLockTracker` can be implemented to track range locks without affecting other components. After this PR, a clean interface for lock manager should be possible, and then ideally, we can have pluggable locking protocols. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7013 Test Plan: Run `transaction_test` and `optimistic_transaction_test`. Reviewed By: ajkr Differential Revision: D22163706 Pulled By: cheng-chang fbshipit-source-id: f2860577b5334e31dd2994f5bc6d7c40d502b1b4
2020-08-06 19:36:48 +00:00
SequenceNumber tracked_at_seq =
status.locked ? status.seq : kMaxSequenceNumber;
if (!do_validate || (snapshot_ == nullptr &&
(0 == ts_sz || kMaxTxnTimestamp == read_timestamp_))) {
if (assume_tracked && !previously_locked &&
tracked_locks_->IsPointLockSupported()) {
s = Status::InvalidArgument(
"assume_tracked is set but it is not tracked yet");
}
// Need to remember the earliest sequence number that we know that this
// key has not been modified after. This is useful if this same
// transaction later tries to lock this key again.
if (tracked_at_seq == kMaxSequenceNumber) {
// Since we haven't checked a snapshot, we only know this key has not
// been modified since after we locked it.
// Note: when last_seq_same_as_publish_seq_==false this is less than the
// latest allocated seq but it is ok since i) this is just a heuristic
// used only as a hint to avoid actual check for conflicts, ii) this would
// cause a false positive only if the snapthot is taken right after the
// lock, which would be an unusual sequence.
tracked_at_seq = db_->GetLatestSequenceNumber();
}
} else if (s.ok()) {
// If a snapshot is set, we need to make sure the key hasn't been modified
// since the snapshot. This must be done after we locked the key.
// If we already have validated an earilier snapshot it must has been
// reflected in tracked_at_seq and ValidateSnapshot will return OK.
s = ValidateSnapshot(column_family, key, &tracked_at_seq);
if (!s.ok()) {
// Failed to validate key
// Unlock key we just locked
if (lock_upgrade) {
s = txn_db_impl_->TryLock(this, cfh_id, key_str, false /* exclusive */);
assert(s.ok());
} else if (!previously_locked) {
txn_db_impl_->UnLock(this, cfh_id, key.ToString());
}
}
}
if (s.ok()) {
// We must track all the locked keys so that we can unlock them later. If
// the key is already locked, this func will update some stats on the
// tracked key. It could also update the tracked_at_seq if it is lower
// than the existing tracked key seq. These stats are necessary for
// RollbackToSavePoint to determine whether a key can be safely removed
// from tracked_keys_. Removal can only be done if a key was only locked
// during the current savepoint.
//
// Recall that if assume_tracked is true, we assume that TrackKey has been
// called previously since the last savepoint, with the same exclusive
// setting, and at a lower sequence number, so skipping here should be
// safe.
if (!assume_tracked) {
TrackKey(cfh_id, key_str, tracked_at_seq, read_only, exclusive);
} else {
#ifndef NDEBUG
if (tracked_locks_->IsPointLockSupported()) {
PointLockStatus lock_status =
tracked_locks_->GetPointLockStatus(cfh_id, key_str);
assert(lock_status.locked);
assert(lock_status.seq <= tracked_at_seq);
assert(lock_status.exclusive == exclusive);
}
#endif
}
}
return s;
}
Status PessimisticTransaction::GetRangeLock(ColumnFamilyHandle* column_family,
const Endpoint& start_endp,
const Endpoint& end_endp) {
ColumnFamilyHandle* cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
uint32_t cfh_id = GetColumnFamilyID(cfh);
Status s = txn_db_impl_->TryRangeLock(this, cfh_id, start_endp, end_endp);
if (s.ok()) {
RangeLockRequest req{cfh_id, start_endp, end_endp};
tracked_locks_->Track(req);
}
return s;
}
// Return OK() if this key has not been modified more recently than the
// transaction snapshot_.
// tracked_at_seq is the global seq at which we either locked the key or already
// have done ValidateSnapshot.
Status PessimisticTransaction::ValidateSnapshot(
ColumnFamilyHandle* column_family, const Slice& key,
SequenceNumber* tracked_at_seq) {
assert(snapshot_ || read_timestamp_ < kMaxTxnTimestamp);
SequenceNumber snap_seq = 0;
if (snapshot_) {
snap_seq = snapshot_->GetSequenceNumber();
if (*tracked_at_seq <= snap_seq) {
// If the key has been previous validated (or locked) at a sequence number
// earlier than the current snapshot's sequence number, we already know it
// has not been modified aftter snap_seq either.
return Status::OK();
}
} else {
snap_seq = db_impl_->GetLatestSequenceNumber();
}
// Otherwise we have either
// 1: tracked_at_seq == kMaxSequenceNumber, i.e., first time tracking the key
// 2: snap_seq < tracked_at_seq: last time we lock the key was via
// do_validate=false which means we had skipped ValidateSnapshot. In both
// cases we should do ValidateSnapshot now.
*tracked_at_seq = snap_seq;
ColumnFamilyHandle* cfh =
column_family ? column_family : db_impl_->DefaultColumnFamily();
Add commit_timestamp and read_timestamp to Pessimistic transaction (#9537) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9537 Add `Transaction::SetReadTimestampForValidation()` and `Transaction::SetCommitTimestamp()` APIs with default implementation returning `Status::NotSupported()`. Currently, calling these two APIs do not have any effect. Also add checks to `PessimisticTransactionDB` to enforce that column families in the same db either - disable user-defined timestamp - enable 64-bit timestamp Just to clarify, a `PessimisticTransactionDB` can have some column families without timestamps as well as column families that enable timestamp. Each `PessimisticTransaction` can have two optional timestamps, `read_timestamp_` used for additional validation and `commit_timestamp_` which denotes when the transaction commits. For now, we are going to support `WriteCommittedTxn` (in a series of subsequent PRs) Once set, we do not allow decreasing `read_timestamp_`. The `commit_timestamp_` must be greater than `read_timestamp_` for each transaction and must be set before commit, unless the transaction does not involve any column family that enables user-defined timestamp. TransactionDB builds on top of RocksDB core `DB` layer. Though `DB` layer assumes that user-defined timestamps are byte arrays, `TransactionDB` uses uint64_t to store timestamps. When they are passed down, they are still interpreted as byte-arrays by `DB`. Reviewed By: ltamasi Differential Revision: D31567959 fbshipit-source-id: b0b6b69acab5d8e340cf174f33e8b09f1c3d3502
2022-02-12 04:18:06 +00:00
assert(cfh);
const Comparator* const ucmp = cfh->GetComparator();
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
std::string ts_buf;
if (ts_sz > 0 && read_timestamp_ < kMaxTxnTimestamp) {
assert(ts_sz == sizeof(read_timestamp_));
PutFixed64(&ts_buf, read_timestamp_);
}
return TransactionUtil::CheckKeyForConflicts(
Add commit_timestamp and read_timestamp to Pessimistic transaction (#9537) Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9537 Add `Transaction::SetReadTimestampForValidation()` and `Transaction::SetCommitTimestamp()` APIs with default implementation returning `Status::NotSupported()`. Currently, calling these two APIs do not have any effect. Also add checks to `PessimisticTransactionDB` to enforce that column families in the same db either - disable user-defined timestamp - enable 64-bit timestamp Just to clarify, a `PessimisticTransactionDB` can have some column families without timestamps as well as column families that enable timestamp. Each `PessimisticTransaction` can have two optional timestamps, `read_timestamp_` used for additional validation and `commit_timestamp_` which denotes when the transaction commits. For now, we are going to support `WriteCommittedTxn` (in a series of subsequent PRs) Once set, we do not allow decreasing `read_timestamp_`. The `commit_timestamp_` must be greater than `read_timestamp_` for each transaction and must be set before commit, unless the transaction does not involve any column family that enables user-defined timestamp. TransactionDB builds on top of RocksDB core `DB` layer. Though `DB` layer assumes that user-defined timestamps are byte arrays, `TransactionDB` uses uint64_t to store timestamps. When they are passed down, they are still interpreted as byte-arrays by `DB`. Reviewed By: ltamasi Differential Revision: D31567959 fbshipit-source-id: b0b6b69acab5d8e340cf174f33e8b09f1c3d3502
2022-02-12 04:18:06 +00:00
db_impl_, cfh, key.ToString(), snap_seq, ts_sz == 0 ? nullptr : &ts_buf,
false /* cache_only */);
}
bool PessimisticTransaction::TryStealingLocks() {
assert(IsExpired());
TransactionState expected = STARTED;
return std::atomic_compare_exchange_strong(&txn_state_, &expected,
LOCKS_STOLEN);
}
void PessimisticTransaction::UnlockGetForUpdate(
ColumnFamilyHandle* column_family, const Slice& key) {
txn_db_impl_->UnLock(this, GetColumnFamilyID(column_family), key.ToString());
}
Status PessimisticTransaction::SetName(const TransactionName& name) {
Status s;
if (txn_state_ == STARTED) {
if (name_.length()) {
s = Status::InvalidArgument("Transaction has already been named.");
} else if (txn_db_impl_->GetTransactionByName(name) != nullptr) {
s = Status::InvalidArgument("Transaction name must be unique.");
} else if (name.length() < 1 || name.length() > 512) {
s = Status::InvalidArgument(
"Transaction name length must be between 1 and 512 chars.");
} else {
name_ = name;
txn_db_impl_->RegisterTransaction(this);
}
} else {
s = Status::InvalidArgument("Transaction is beyond state for naming.");
}
return s;
}
} // namespace ROCKSDB_NAMESPACE