2016-05-20 14:49:39 +00:00
|
|
|
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
2016-05-21 09:51:42 +00:00
|
|
|
// Adapted to be used with google benchmark
|
2016-05-20 14:49:39 +00:00
|
|
|
|
2017-07-04 22:31:47 +00:00
|
|
|
#include "benchmark/benchmark.h"
|
2016-05-26 20:39:17 +00:00
|
|
|
|
2016-06-02 20:01:31 +00:00
|
|
|
#include <algorithm>
|
|
|
|
#include <cmath>
|
2016-05-23 18:12:54 +00:00
|
|
|
#include "check.h"
|
2016-06-02 20:01:31 +00:00
|
|
|
#include "complexity.h"
|
2016-05-20 14:49:39 +00:00
|
|
|
|
2016-05-25 20:57:52 +00:00
|
|
|
namespace benchmark {
|
2016-06-01 21:08:01 +00:00
|
|
|
|
2016-05-20 14:49:39 +00:00
|
|
|
// Internal function to calculate the different scalability forms
|
2016-06-01 21:08:01 +00:00
|
|
|
BigOFunc* FittingCurve(BigO complexity) {
|
2018-06-05 10:36:26 +00:00
|
|
|
static const double kLog2E = 1.44269504088896340736;
|
2016-05-25 20:26:57 +00:00
|
|
|
switch (complexity) {
|
2016-06-02 20:01:31 +00:00
|
|
|
case oN:
|
2018-04-23 10:58:02 +00:00
|
|
|
return [](int64_t n) -> double { return static_cast<double>(n); };
|
2016-06-02 20:01:31 +00:00
|
|
|
case oNSquared:
|
2018-04-12 14:40:24 +00:00
|
|
|
return [](int64_t n) -> double { return std::pow(n, 2); };
|
2016-06-02 20:01:31 +00:00
|
|
|
case oNCubed:
|
2018-04-12 14:40:24 +00:00
|
|
|
return [](int64_t n) -> double { return std::pow(n, 3); };
|
2016-06-02 20:01:31 +00:00
|
|
|
case oLogN:
|
2018-06-05 10:36:26 +00:00
|
|
|
/* Note: can't use log2 because Android's GNU STL lacks it */
|
|
|
|
return [](int64_t n) { return kLog2E * log(n); };
|
2016-06-02 20:01:31 +00:00
|
|
|
case oNLogN:
|
2018-06-05 10:36:26 +00:00
|
|
|
/* Note: can't use log2 because Android's GNU STL lacks it */
|
|
|
|
return [](int64_t n) { return kLog2E * n * log(n); };
|
2016-06-02 20:01:31 +00:00
|
|
|
case o1:
|
|
|
|
default:
|
2018-04-12 14:40:24 +00:00
|
|
|
return [](int64_t) { return 1.0; };
|
2016-05-25 20:26:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-05-25 21:33:25 +00:00
|
|
|
// Function to return an string for the calculated complexity
|
2016-05-25 20:57:52 +00:00
|
|
|
std::string GetBigOString(BigO complexity) {
|
2016-05-23 18:40:41 +00:00
|
|
|
switch (complexity) {
|
2016-06-02 20:01:31 +00:00
|
|
|
case oN:
|
|
|
|
return "N";
|
|
|
|
case oNSquared:
|
|
|
|
return "N^2";
|
|
|
|
case oNCubed:
|
|
|
|
return "N^3";
|
|
|
|
case oLogN:
|
|
|
|
return "lgN";
|
|
|
|
case oNLogN:
|
|
|
|
return "NlgN";
|
|
|
|
case o1:
|
|
|
|
return "(1)";
|
|
|
|
default:
|
|
|
|
return "f(N)";
|
2016-05-23 18:40:41 +00:00
|
|
|
}
|
2016-05-20 14:49:39 +00:00
|
|
|
}
|
|
|
|
|
2016-06-02 20:01:31 +00:00
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
|
|
// minimizing the sum of squares of relative error, for the fitting curve
|
2018-03-06 11:44:25 +00:00
|
|
|
// given by the lambda expression.
|
2016-05-25 20:26:57 +00:00
|
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
|
|
// - time : Vector containing the times for the benchmark tests.
|
2018-04-12 14:40:24 +00:00
|
|
|
// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
|
2016-05-25 21:33:25 +00:00
|
|
|
|
2016-05-24 20:25:59 +00:00
|
|
|
// For a deeper explanation on the algorithm logic, look the README file at
|
|
|
|
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
|
2016-05-20 14:49:39 +00:00
|
|
|
|
2018-04-12 14:40:24 +00:00
|
|
|
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
|
2016-06-01 21:08:01 +00:00
|
|
|
const std::vector<double>& time,
|
|
|
|
BigOFunc* fitting_curve) {
|
2016-05-26 17:44:11 +00:00
|
|
|
double sigma_gn = 0.0;
|
|
|
|
double sigma_gn_squared = 0.0;
|
|
|
|
double sigma_time = 0.0;
|
|
|
|
double sigma_time_gn = 0.0;
|
2016-05-23 18:40:41 +00:00
|
|
|
|
|
|
|
// Calculate least square fitting parameter
|
|
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
2016-05-25 20:26:57 +00:00
|
|
|
double gn_i = fitting_curve(n[i]);
|
2016-05-23 18:40:41 +00:00
|
|
|
sigma_gn += gn_i;
|
|
|
|
sigma_gn_squared += gn_i * gn_i;
|
|
|
|
sigma_time += time[i];
|
|
|
|
sigma_time_gn += time[i] * gn_i;
|
|
|
|
}
|
|
|
|
|
|
|
|
LeastSq result;
|
2016-06-01 21:08:01 +00:00
|
|
|
result.complexity = oLambda;
|
2016-05-23 18:40:41 +00:00
|
|
|
|
2016-05-24 20:25:59 +00:00
|
|
|
// Calculate complexity.
|
2016-05-25 20:26:57 +00:00
|
|
|
result.coef = sigma_time_gn / sigma_gn_squared;
|
2016-05-23 18:40:41 +00:00
|
|
|
|
|
|
|
// Calculate RMS
|
2016-05-26 17:44:11 +00:00
|
|
|
double rms = 0.0;
|
2016-05-23 18:40:41 +00:00
|
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
2016-05-25 20:26:57 +00:00
|
|
|
double fit = result.coef * fitting_curve(n[i]);
|
2016-05-23 18:40:41 +00:00
|
|
|
rms += pow((time[i] - fit), 2);
|
|
|
|
}
|
|
|
|
|
2016-05-24 20:25:59 +00:00
|
|
|
// Normalized RMS by the mean of the observed values
|
2016-05-25 20:26:57 +00:00
|
|
|
double mean = sigma_time / n.size();
|
2016-05-24 20:25:59 +00:00
|
|
|
result.rms = sqrt(rms / n.size()) / mean;
|
2016-05-23 18:40:41 +00:00
|
|
|
|
|
|
|
return result;
|
2016-05-20 14:49:39 +00:00
|
|
|
}
|
|
|
|
|
2016-05-24 20:25:59 +00:00
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
|
|
// minimizing the sum of squares of relative error.
|
2016-05-23 18:12:54 +00:00
|
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
|
|
// - time : Vector containing the times for the benchmark tests.
|
2016-05-24 20:25:59 +00:00
|
|
|
// - complexity : If different than oAuto, the fitting curve will stick to
|
|
|
|
// this one. If it is oAuto, it will be calculated the best
|
|
|
|
// fitting curve.
|
2018-04-12 14:40:24 +00:00
|
|
|
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
|
2016-10-07 18:35:03 +00:00
|
|
|
const std::vector<double>& time, const BigO complexity) {
|
2016-05-23 18:40:41 +00:00
|
|
|
CHECK_EQ(n.size(), time.size());
|
2016-06-02 20:01:31 +00:00
|
|
|
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
|
|
|
|
// benchmark runs are given
|
2016-05-25 20:57:52 +00:00
|
|
|
CHECK_NE(complexity, oNone);
|
2016-05-23 18:40:41 +00:00
|
|
|
|
2016-05-25 20:26:57 +00:00
|
|
|
LeastSq best_fit;
|
|
|
|
|
2016-06-02 20:01:31 +00:00
|
|
|
if (complexity == oAuto) {
|
|
|
|
std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
|
2016-05-23 18:40:41 +00:00
|
|
|
|
2016-05-24 20:25:59 +00:00
|
|
|
// Take o1 as default best fitting curve
|
2016-06-01 21:08:01 +00:00
|
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
|
2016-05-25 20:57:52 +00:00
|
|
|
best_fit.complexity = o1;
|
2016-05-23 18:40:41 +00:00
|
|
|
|
|
|
|
// Compute all possible fitting curves and stick to the best one
|
|
|
|
for (const auto& fit : fit_curves) {
|
2016-06-01 21:08:01 +00:00
|
|
|
LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
|
2016-05-24 20:25:59 +00:00
|
|
|
if (current_fit.rms < best_fit.rms) {
|
2016-05-23 18:40:41 +00:00
|
|
|
best_fit = current_fit;
|
2016-05-25 20:26:57 +00:00
|
|
|
best_fit.complexity = fit;
|
2016-05-24 20:25:59 +00:00
|
|
|
}
|
2016-05-23 18:40:41 +00:00
|
|
|
}
|
2016-05-25 20:26:57 +00:00
|
|
|
} else {
|
2016-06-01 21:08:01 +00:00
|
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
|
2016-05-25 20:26:57 +00:00
|
|
|
best_fit.complexity = complexity;
|
2016-05-23 18:40:41 +00:00
|
|
|
}
|
2016-05-24 20:25:59 +00:00
|
|
|
|
2016-05-25 20:26:57 +00:00
|
|
|
return best_fit;
|
2016-05-24 20:25:59 +00:00
|
|
|
}
|
2016-05-25 20:57:52 +00:00
|
|
|
|
2016-05-27 22:45:25 +00:00
|
|
|
std::vector<BenchmarkReporter::Run> ComputeBigO(
|
2016-06-02 20:01:31 +00:00
|
|
|
const std::vector<BenchmarkReporter::Run>& reports) {
|
2016-05-27 22:45:25 +00:00
|
|
|
typedef BenchmarkReporter::Run Run;
|
|
|
|
std::vector<Run> results;
|
|
|
|
|
|
|
|
if (reports.size() < 2) return results;
|
|
|
|
|
|
|
|
// Accumulators.
|
2018-04-12 14:40:24 +00:00
|
|
|
std::vector<int64_t> n;
|
2016-05-27 22:45:25 +00:00
|
|
|
std::vector<double> real_time;
|
|
|
|
std::vector<double> cpu_time;
|
|
|
|
|
|
|
|
// Populate the accumulators.
|
|
|
|
for (const Run& run : reports) {
|
2016-06-27 18:26:23 +00:00
|
|
|
CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
|
2016-05-27 22:45:25 +00:00
|
|
|
n.push_back(run.complexity_n);
|
2016-06-02 20:01:31 +00:00
|
|
|
real_time.push_back(run.real_accumulated_time / run.iterations);
|
|
|
|
cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
|
2016-05-27 22:45:25 +00:00
|
|
|
}
|
|
|
|
|
2016-06-01 21:08:01 +00:00
|
|
|
LeastSq result_cpu;
|
|
|
|
LeastSq result_real;
|
2016-05-27 22:45:25 +00:00
|
|
|
|
2016-06-02 20:23:39 +00:00
|
|
|
if (reports[0].complexity == oLambda) {
|
2016-06-01 21:08:01 +00:00
|
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
|
|
|
|
result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
|
2016-06-02 20:23:39 +00:00
|
|
|
} else {
|
|
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
|
|
|
|
result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
|
2016-06-01 21:08:01 +00:00
|
|
|
}
|
2016-06-02 20:01:31 +00:00
|
|
|
std::string benchmark_name =
|
|
|
|
reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
|
2016-05-27 22:45:25 +00:00
|
|
|
|
|
|
|
// Get the data from the accumulator to BenchmarkReporter::Run's.
|
|
|
|
Run big_o;
|
|
|
|
big_o.benchmark_name = benchmark_name + "_BigO";
|
|
|
|
big_o.iterations = 0;
|
|
|
|
big_o.real_accumulated_time = result_real.coef;
|
|
|
|
big_o.cpu_accumulated_time = result_cpu.coef;
|
|
|
|
big_o.report_big_o = true;
|
|
|
|
big_o.complexity = result_cpu.complexity;
|
|
|
|
|
2017-04-04 19:31:28 +00:00
|
|
|
// All the time results are reported after being multiplied by the
|
|
|
|
// time unit multiplier. But since RMS is a relative quantity it
|
|
|
|
// should not be multiplied at all. So, here, we _divide_ it by the
|
|
|
|
// multiplier so that when it is multiplied later the result is the
|
|
|
|
// correct one.
|
2016-05-27 22:45:25 +00:00
|
|
|
double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
|
|
|
|
|
|
|
|
// Only add label to mean/stddev if it is same for all runs
|
|
|
|
Run rms;
|
|
|
|
big_o.report_label = reports[0].report_label;
|
|
|
|
rms.benchmark_name = benchmark_name + "_RMS";
|
|
|
|
rms.report_label = big_o.report_label;
|
|
|
|
rms.iterations = 0;
|
|
|
|
rms.real_accumulated_time = result_real.rms / multiplier;
|
|
|
|
rms.cpu_accumulated_time = result_cpu.rms / multiplier;
|
|
|
|
rms.report_rms = true;
|
|
|
|
rms.complexity = result_cpu.complexity;
|
2017-04-04 19:31:28 +00:00
|
|
|
// don't forget to keep the time unit, or we won't be able to
|
|
|
|
// recover the correct value.
|
|
|
|
rms.time_unit = reports[0].time_unit;
|
2016-05-27 22:45:25 +00:00
|
|
|
|
|
|
|
results.push_back(big_o);
|
|
|
|
results.push_back(rms);
|
|
|
|
return results;
|
|
|
|
}
|
|
|
|
|
2016-05-25 21:13:19 +00:00
|
|
|
} // end namespace benchmark
|