mirror of
https://github.com/google/benchmark.git
synced 2024-11-26 07:32:19 +00:00
upgraded leastsq
This commit is contained in:
parent
e246699f25
commit
087f0d3f1b
|
@ -20,37 +20,54 @@
|
|||
#include <math.h>
|
||||
|
||||
// Internal function to calculate the different scalability forms
|
||||
double FittingCurve(double n, benchmark::BigO complexity) {
|
||||
std::function<double(int)> FittingCurve(benchmark::BigO complexity) {
|
||||
switch (complexity) {
|
||||
case benchmark::oN:
|
||||
return n;
|
||||
case benchmark::oNSquared:
|
||||
return pow(n, 2);
|
||||
case benchmark::oNCubed:
|
||||
return pow(n, 3);
|
||||
case benchmark::oLogN:
|
||||
return log2(n);
|
||||
case benchmark::oNLogN:
|
||||
return n * log2(n);
|
||||
case benchmark::o1:
|
||||
default:
|
||||
return 1;
|
||||
case benchmark::oN:
|
||||
return [](int n) {return n; };
|
||||
case benchmark::oNSquared:
|
||||
return [](int n) {return n*n; };
|
||||
case benchmark::oNCubed:
|
||||
return [](int n) {return n*n*n; };
|
||||
case benchmark::oLogN:
|
||||
return [](int n) {return log2(n); };
|
||||
case benchmark::oNLogN:
|
||||
return [](int n) {return n * log2(n); };
|
||||
case benchmark::o1:
|
||||
default:
|
||||
return [](int) {return 1; };
|
||||
}
|
||||
}
|
||||
|
||||
// Internal function to find the coefficient for the high-order term in the
|
||||
// running time, by minimizing the sum of squares of relative error.
|
||||
// - n : Vector containing the size of the benchmark tests.
|
||||
// - time : Vector containing the times for the benchmark tests.
|
||||
// - complexity : Fitting curve.
|
||||
// Internal function to to return an string for the calculated complexity
|
||||
std::string GetBigOString(benchmark::BigO complexity) {
|
||||
switch (complexity) {
|
||||
case benchmark::oN:
|
||||
return "* N";
|
||||
case benchmark::oNSquared:
|
||||
return "* N**2";
|
||||
case benchmark::oNCubed:
|
||||
return "* N**3";
|
||||
case benchmark::oLogN:
|
||||
return "* lgN";
|
||||
case benchmark::oNLogN:
|
||||
return "* NlgN";
|
||||
case benchmark::o1:
|
||||
return "* 1";
|
||||
default:
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
// Find the coefficient for the high-order term in the running time, by minimizing the sum of squares of relative error, for the fitting curve given on the lambda expresion.
|
||||
// - n : Vector containing the size of the benchmark tests.
|
||||
// - time : Vector containing the times for the benchmark tests.
|
||||
// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
|
||||
// For a deeper explanation on the algorithm logic, look the README file at
|
||||
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
|
||||
|
||||
LeastSq CalculateLeastSq(const std::vector<int>& n,
|
||||
const std::vector<double>& time,
|
||||
const benchmark::BigO complexity) {
|
||||
CHECK_NE(complexity, benchmark::oAuto);
|
||||
|
||||
LeastSq CalculateLeastSq(const std::vector<int>& n,
|
||||
const std::vector<double>& time,
|
||||
std::function<double(int)> fitting_curve) {
|
||||
double sigma_gn = 0;
|
||||
double sigma_gn_squared = 0;
|
||||
double sigma_time = 0;
|
||||
|
@ -58,7 +75,7 @@ LeastSq CalculateLeastSq(const std::vector<int>& n,
|
|||
|
||||
// Calculate least square fitting parameter
|
||||
for (size_t i = 0; i < n.size(); ++i) {
|
||||
double gn_i = FittingCurve(n[i], complexity);
|
||||
double gn_i = fitting_curve(n[i]);
|
||||
sigma_gn += gn_i;
|
||||
sigma_gn_squared += gn_i * gn_i;
|
||||
sigma_time += time[i];
|
||||
|
@ -66,26 +83,19 @@ LeastSq CalculateLeastSq(const std::vector<int>& n,
|
|||
}
|
||||
|
||||
LeastSq result;
|
||||
result.complexity = complexity;
|
||||
|
||||
// Calculate complexity.
|
||||
// o1 is treated as an special case
|
||||
if (complexity != benchmark::o1) {
|
||||
result.coef = sigma_time_gn / sigma_gn_squared;
|
||||
} else {
|
||||
result.coef = sigma_time / n.size();
|
||||
}
|
||||
result.coef = sigma_time_gn / sigma_gn_squared;
|
||||
|
||||
// Calculate RMS
|
||||
double rms = 0;
|
||||
for (size_t i = 0; i < n.size(); ++i) {
|
||||
double fit = result.coef * FittingCurve(n[i], complexity);
|
||||
double fit = result.coef * fitting_curve(n[i]);
|
||||
rms += pow((time[i] - fit), 2);
|
||||
}
|
||||
|
||||
double mean = sigma_time / n.size();
|
||||
|
||||
// Normalized RMS by the mean of the observed values
|
||||
double mean = sigma_time / n.size();
|
||||
result.rms = sqrt(rms / n.size()) / mean;
|
||||
|
||||
return result;
|
||||
|
@ -105,24 +115,32 @@ LeastSq MinimalLeastSq(const std::vector<int>& n,
|
|||
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two benchmark runs are given
|
||||
CHECK_NE(complexity, benchmark::oNone);
|
||||
|
||||
LeastSq best_fit;
|
||||
|
||||
if(complexity == benchmark::oAuto) {
|
||||
std::vector<benchmark::BigO> fit_curves = {
|
||||
benchmark::oLogN, benchmark::oN, benchmark::oNLogN, benchmark::oNSquared,
|
||||
benchmark::oNCubed };
|
||||
|
||||
// Take o1 as default best fitting curve
|
||||
LeastSq best_fit = CalculateLeastSq(n, time, benchmark::o1);
|
||||
best_fit = CalculateLeastSq(n, time, FittingCurve(benchmark::o1));
|
||||
best_fit.complexity = benchmark::o1;
|
||||
best_fit.caption = GetBigOString(benchmark::o1);
|
||||
|
||||
// Compute all possible fitting curves and stick to the best one
|
||||
for (const auto& fit : fit_curves) {
|
||||
LeastSq current_fit = CalculateLeastSq(n, time, fit);
|
||||
LeastSq current_fit = CalculateLeastSq(n, time, FittingCurve(fit));
|
||||
if (current_fit.rms < best_fit.rms) {
|
||||
best_fit = current_fit;
|
||||
best_fit.complexity = fit;
|
||||
best_fit.caption = GetBigOString(fit);
|
||||
}
|
||||
}
|
||||
|
||||
return best_fit;
|
||||
} else {
|
||||
best_fit = CalculateLeastSq(n, time, FittingCurve(complexity));
|
||||
best_fit.complexity = complexity;
|
||||
best_fit.caption = GetBigOString(complexity);
|
||||
}
|
||||
|
||||
return CalculateLeastSq(n, time, complexity);
|
||||
return best_fit;
|
||||
}
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "benchmark/benchmark_api.h"
|
||||
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
// This data structure will contain the result returned by MinimalLeastSq
|
||||
// - coef : Estimated coeficient for the high-order term as
|
||||
|
@ -35,11 +36,13 @@ struct LeastSq {
|
|||
LeastSq() :
|
||||
coef(0),
|
||||
rms(0),
|
||||
complexity(benchmark::oNone) {}
|
||||
complexity(benchmark::oNone),
|
||||
caption("") {}
|
||||
|
||||
double coef;
|
||||
double rms;
|
||||
benchmark::BigO complexity;
|
||||
std::string caption;
|
||||
};
|
||||
|
||||
// Find the coefficient for the high-order term in the running time, by
|
||||
|
@ -48,4 +51,18 @@ LeastSq MinimalLeastSq(const std::vector<int>& n,
|
|||
const std::vector<double>& time,
|
||||
const benchmark::BigO complexity = benchmark::oAuto);
|
||||
|
||||
// This interface is currently not used from the oustide, but it has been provided
|
||||
// for future upgrades. If in the future it is not needed to support Cxx03, then
|
||||
// all the calculations could be upgraded to use lambdas because they are more
|
||||
// powerful and provide a cleaner inferface than enumerators, but complete
|
||||
// implementation with lambdas will not work for Cxx03 (e.g. lack of std::function).
|
||||
// In case lambdas are implemented, the interface would be like :
|
||||
// -> Complexity([](int n) {return n;};)
|
||||
// and any arbitrary and valid equation would be allowed, but the option to calculate
|
||||
// the best fit to the most common scalability curves will still be kept.
|
||||
LeastSq CalculateLeastSq(const std::vector<int>& n,
|
||||
const std::vector<double>& time,
|
||||
std::function<double(int)> fitting_curve);
|
||||
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue