176 lines
5.5 KiB
Rust
176 lines
5.5 KiB
Rust
/// A convenient macro to execute a Python code snippet, with some local variables set.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This macro internally calls [`Python::run`](crate::Python::run) and panics
|
|
/// if it returns `Err`, after printing the error to stdout.
|
|
///
|
|
/// If you need to handle failures, please use [`Python::run`](crate::marker::Python::run) instead.
|
|
///
|
|
/// # Examples
|
|
/// ```
|
|
/// use pyo3::{prelude::*, py_run, types::PyList};
|
|
///
|
|
/// Python::with_gil(|py| {
|
|
/// let list = PyList::new_bound(py, &[1, 2, 3]);
|
|
/// py_run!(py, list, "assert list == [1, 2, 3]");
|
|
/// });
|
|
/// ```
|
|
///
|
|
/// You can use this macro to test pyfunctions or pyclasses quickly.
|
|
///
|
|
/// ```
|
|
/// use pyo3::{prelude::*, py_run};
|
|
///
|
|
/// #[pyclass]
|
|
/// #[derive(Debug)]
|
|
/// struct Time {
|
|
/// hour: u32,
|
|
/// minute: u32,
|
|
/// second: u32,
|
|
/// }
|
|
///
|
|
/// #[pymethods]
|
|
/// impl Time {
|
|
/// fn repl_japanese(&self) -> String {
|
|
/// format!("{}時{}分{}秒", self.hour, self.minute, self.second)
|
|
/// }
|
|
/// #[getter]
|
|
/// fn hour(&self) -> u32 {
|
|
/// self.hour
|
|
/// }
|
|
/// fn as_tuple(&self) -> (u32, u32, u32) {
|
|
/// (self.hour, self.minute, self.second)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// Python::with_gil(|py| {
|
|
/// let time = PyCell::new(py, Time {hour: 8, minute: 43, second: 16}).unwrap();
|
|
/// let time_as_tuple = (8, 43, 16);
|
|
/// py_run!(py, time time_as_tuple, r#"
|
|
/// assert time.hour == 8
|
|
/// assert time.repl_japanese() == "8時43分16秒"
|
|
/// assert time.as_tuple() == time_as_tuple
|
|
/// "#);
|
|
/// });
|
|
/// ```
|
|
///
|
|
/// If you need to prepare the `locals` dict by yourself, you can pass it as `*locals`.
|
|
///
|
|
/// ```
|
|
/// use pyo3::prelude::*;
|
|
/// use pyo3::types::IntoPyDict;
|
|
///
|
|
/// #[pyclass]
|
|
/// struct MyClass;
|
|
///
|
|
/// #[pymethods]
|
|
/// impl MyClass {
|
|
/// #[new]
|
|
/// fn new() -> Self {
|
|
/// MyClass {}
|
|
/// }
|
|
/// }
|
|
///
|
|
/// Python::with_gil(|py| {
|
|
/// let locals = [("C", py.get_type::<MyClass>())].into_py_dict(py);
|
|
/// pyo3::py_run!(py, *locals, "c = C()");
|
|
/// });
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! py_run {
|
|
($py:expr, $($val:ident)+, $code:literal) => {{
|
|
$crate::py_run_impl!($py, $($val)+, $crate::indoc::indoc!($code))
|
|
}};
|
|
($py:expr, $($val:ident)+, $code:expr) => {{
|
|
$crate::py_run_impl!($py, $($val)+, &$crate::unindent::unindent($code))
|
|
}};
|
|
($py:expr, *$dict:expr, $code:literal) => {{
|
|
$crate::py_run_impl!($py, *$dict, $crate::indoc::indoc!($code))
|
|
}};
|
|
($py:expr, *$dict:expr, $code:expr) => {{
|
|
$crate::py_run_impl!($py, *$dict, &$crate::unindent::unindent($code))
|
|
}};
|
|
}
|
|
|
|
#[macro_export]
|
|
#[doc(hidden)]
|
|
macro_rules! py_run_impl {
|
|
($py:expr, $($val:ident)+, $code:expr) => {{
|
|
use $crate::types::IntoPyDict;
|
|
use $crate::ToPyObject;
|
|
let d = [$((stringify!($val), $val.to_object($py)),)+].into_py_dict($py);
|
|
$crate::py_run_impl!($py, *d, $code)
|
|
}};
|
|
($py:expr, *$dict:expr, $code:expr) => {{
|
|
use ::std::option::Option::*;
|
|
if let ::std::result::Result::Err(e) = $py.run($code, None, Some($dict)) {
|
|
e.print($py);
|
|
// So when this c api function the last line called printed the error to stderr,
|
|
// the output is only written into a buffer which is never flushed because we
|
|
// panic before flushing. This is where this hack comes into place
|
|
$py.run("import sys; sys.stderr.flush()", None, None)
|
|
.unwrap();
|
|
::std::panic!("{}", $code)
|
|
}
|
|
}};
|
|
}
|
|
|
|
/// Wraps a Rust function annotated with [`#[pyfunction]`](macro@crate::pyfunction).
|
|
///
|
|
/// This can be used with [`PyModule::add_function`](crate::types::PyModule::add_function) to add free
|
|
/// functions to a [`PyModule`](crate::types::PyModule) - see its documentation for more information.
|
|
#[macro_export]
|
|
macro_rules! wrap_pyfunction {
|
|
($function:path) => {
|
|
&|py_or_module| {
|
|
use $function as wrapped_pyfunction;
|
|
$crate::impl_::pyfunction::_wrap_pyfunction(&wrapped_pyfunction::DEF, py_or_module)
|
|
}
|
|
};
|
|
($function:path, $py_or_module:expr) => {{
|
|
use $function as wrapped_pyfunction;
|
|
$crate::impl_::pyfunction::_wrap_pyfunction(&wrapped_pyfunction::DEF, $py_or_module)
|
|
}};
|
|
}
|
|
|
|
/// Returns a function that takes a [`Python`](crate::Python) instance and returns a
|
|
/// Python module.
|
|
///
|
|
/// Use this together with [`#[pymodule]`](crate::pymodule) and
|
|
/// [`PyModule::add_wrapped`](crate::types::PyModule::add_wrapped).
|
|
#[macro_export]
|
|
macro_rules! wrap_pymodule {
|
|
($module:path) => {
|
|
&|py| {
|
|
use $module as wrapped_pymodule;
|
|
wrapped_pymodule::DEF
|
|
.make_module(py)
|
|
.expect("failed to wrap pymodule")
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Add the module to the initialization table in order to make embedded Python code to use it.
|
|
/// Module name is the argument.
|
|
///
|
|
/// Use it before [`prepare_freethreaded_python`](crate::prepare_freethreaded_python) and
|
|
/// leave feature `auto-initialize` off
|
|
#[cfg(not(PyPy))]
|
|
#[macro_export]
|
|
macro_rules! append_to_inittab {
|
|
($module:ident) => {
|
|
unsafe {
|
|
if $crate::ffi::Py_IsInitialized() != 0 {
|
|
::std::panic!(
|
|
"called `append_to_inittab` but a Python interpreter is already running."
|
|
);
|
|
}
|
|
$crate::ffi::PyImport_AppendInittab(
|
|
$module::NAME.as_ptr() as *const ::std::os::raw::c_char,
|
|
::std::option::Option::Some($module::init),
|
|
);
|
|
}
|
|
};
|
|
}
|