pyo3/src/gil.rs
2020-07-18 01:57:39 +01:00

689 lines
23 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2017-present PyO3 Project and Contributors
//! Interaction with python's global interpreter lock
use crate::{ffi, internal_tricks::Unsendable, Python};
use parking_lot::{const_mutex, Mutex};
use std::cell::{Cell, RefCell};
use std::{mem::ManuallyDrop, ptr::NonNull, sync};
static START: sync::Once = sync::Once::new();
thread_local! {
/// This is a internal counter in pyo3 monitoring whether this thread has the GIL.
///
/// It will be incremented whenever a GILPool is created, and decremented whenever they are
/// dropped.
///
/// As a result, if this thread has the GIL, GIL_COUNT is greater than zero.
///
/// pub(crate) because it is manipulated temporarily by Python::allow_threads
pub(crate) static GIL_COUNT: Cell<u32> = Cell::new(0);
/// Temporally hold objects that will be released when the GILPool drops.
static OWNED_OBJECTS: RefCell<Vec<NonNull<ffi::PyObject>>> = RefCell::new(Vec::with_capacity(256));
}
/// Check whether the GIL is acquired.
///
/// Note: This uses pyo3's internal count rather than PyGILState_Check for two reasons:
/// 1) for performance
/// 2) PyGILState_Check always returns 1 if the sub-interpreter APIs have ever been called,
/// which could lead to incorrect conclusions that the GIL is held.
pub(crate) fn gil_is_acquired() -> bool {
GIL_COUNT.try_with(|c| c.get() > 0).unwrap_or(false)
}
/// Prepares the use of Python in a free-threaded context.
///
/// If the Python interpreter is not already initialized, this function
/// will initialize it with disabled signal handling
/// (Python will not raise the `KeyboardInterrupt` exception).
/// Python signal handling depends on the notion of a 'main thread', which must be
/// the thread that initializes the Python interpreter.
///
/// If both the Python interpreter and Python threading are already initialized,
/// this function has no effect.
///
/// # Panic
/// If the Python interpreter is initialized but Python threading is not,
/// a panic occurs.
/// It is not possible to safely access the Python runtime unless the main
/// thread (the thread which originally initialized Python) also initializes
/// threading.
///
/// When writing an extension module, the `#[pymodule]` macro
/// will ensure that Python threading is initialized.
///
pub fn prepare_freethreaded_python() {
// Protect against race conditions when Python is not yet initialized
// and multiple threads concurrently call 'prepare_freethreaded_python()'.
// Note that we do not protect against concurrent initialization of the Python runtime
// by other users of the Python C API.
START.call_once(|| unsafe {
if ffi::Py_IsInitialized() != 0 {
// If Python is already initialized, we expect Python threading to also be initialized,
// as we can't make the existing Python main thread acquire the GIL.
#[cfg(not(Py_3_7))]
assert_ne!(ffi::PyEval_ThreadsInitialized(), 0);
} else {
// If Python isn't initialized yet, we expect that Python threading
// isn't initialized either.
#[cfg(not(Py_3_7))]
assert_eq!(ffi::PyEval_ThreadsInitialized(), 0);
// Initialize Python.
// We use Py_InitializeEx() with initsigs=0 to disable Python signal handling.
// Signal handling depends on the notion of a 'main thread', which doesn't exist in this case.
// Note that the 'main thread' notion in Python isn't documented properly;
// and running Python without one is not officially supported.
// PyPy does not support the embedding API
#[cfg(not(PyPy))]
{
ffi::Py_InitializeEx(0);
// Make sure Py_Finalize will be called before exiting.
extern "C" fn finalize() {
unsafe {
if ffi::Py_IsInitialized() != 0 {
ffi::PyGILState_Ensure();
ffi::Py_Finalize();
}
}
}
libc::atexit(finalize);
}
// > Changed in version 3.7: This function is now called by Py_Initialize(), so you dont have
// > to call it yourself anymore.
#[cfg(not(Py_3_7))]
ffi::PyEval_InitThreads();
// PyEval_InitThreads() will acquire the GIL,
// but we don't want to hold it at this point
// (it's not acquired in the other code paths)
// So immediately release the GIL:
#[cfg(not(PyPy))]
let _thread_state = ffi::PyEval_SaveThread();
// Note that the PyThreadState returned by PyEval_SaveThread is also held in TLS by the Python runtime,
// and will be restored by PyGILState_Ensure.
}
});
}
/// RAII type that represents the Global Interpreter Lock acquisition.
///
/// # Example
/// ```
/// use pyo3::Python;
///
/// {
/// let gil_guard = Python::acquire_gil();
/// let py = gil_guard.python();
/// } // GIL is released when gil_guard is dropped
/// ```
#[must_use]
pub struct GILGuard {
gstate: ffi::PyGILState_STATE,
pool: ManuallyDrop<Option<GILPool>>,
}
impl GILGuard {
/// Acquires the global interpreter lock, which allows access to the Python runtime. This is
/// safe to call multiple times without causing a deadlock.
///
/// If the Python runtime is not already initialized, this function will initialize it.
/// See [prepare_freethreaded_python()](fn.prepare_freethreaded_python.html) for details.
///
/// If PyO3 does not yet have a `GILPool` for tracking owned PyObject references, then this
/// new `GILGuard` will also contain a `GILPool`.
pub fn acquire() -> GILGuard {
prepare_freethreaded_python();
let gstate = unsafe { ffi::PyGILState_Ensure() }; // acquire GIL
// If there's already a GILPool, we should not create another or this could lead to
// incorrect dangling references in safe code (see #864).
let pool = if !gil_is_acquired() {
Some(unsafe { GILPool::new() })
} else {
None
};
GILGuard {
gstate,
pool: ManuallyDrop::new(pool),
}
}
/// Retrieves the marker type that proves that the GIL was acquired.
#[inline]
pub fn python(&self) -> Python {
unsafe { Python::assume_gil_acquired() }
}
}
/// The Drop implementation for `GILGuard` will release the GIL.
impl Drop for GILGuard {
fn drop(&mut self) {
unsafe {
// Must drop the objects in the pool before releasing the GILGuard
ManuallyDrop::drop(&mut self.pool);
ffi::PyGILState_Release(self.gstate);
}
}
}
/// Thread-safe storage for objects which were inc_ref / dec_ref while the GIL was not held.
struct ReferencePool {
pointers_to_incref: Mutex<Vec<NonNull<ffi::PyObject>>>,
pointers_to_decref: Mutex<Vec<NonNull<ffi::PyObject>>>,
}
impl ReferencePool {
const fn new() -> Self {
Self {
pointers_to_incref: const_mutex(Vec::new()),
pointers_to_decref: const_mutex(Vec::new()),
}
}
fn register_incref(&self, obj: NonNull<ffi::PyObject>) {
self.pointers_to_incref.lock().push(obj)
}
fn register_decref(&self, obj: NonNull<ffi::PyObject>) {
self.pointers_to_decref.lock().push(obj)
}
fn update_counts(&self, _py: Python) {
macro_rules! swap_vec_with_lock {
// Get vec from one of ReferencePool's mutexes via lock, swap vec if needed, unlock.
($cell:expr) => {{
let mut locked = $cell.lock();
let mut out = Vec::new();
if !locked.is_empty() {
std::mem::swap(&mut out, &mut *locked);
}
drop(locked);
out
}};
};
// Always increase reference counts first - as otherwise objects which have a
// nonzero total reference count might be incorrectly dropped by Python during
// this update.
for ptr in swap_vec_with_lock!(self.pointers_to_incref) {
unsafe { ffi::Py_INCREF(ptr.as_ptr()) };
}
for ptr in swap_vec_with_lock!(self.pointers_to_decref) {
unsafe { ffi::Py_DECREF(ptr.as_ptr()) };
}
}
}
unsafe impl Sync for ReferencePool {}
static POOL: ReferencePool = ReferencePool::new();
/// A RAII pool which PyO3 uses to store owned Python references.
pub struct GILPool {
/// Initial length of owned objects and anys.
/// `Option` is used since TSL can be broken when `new` is called from `atexit`.
start: Option<usize>,
no_send: Unsendable,
}
impl GILPool {
/// Create a new `GILPool`. This function should only ever be called with the GIL.
///
/// It is recommended not to use this API directly, but instead to use `Python::new_pool`, as
/// that guarantees the GIL is held.
///
/// # Safety
/// As well as requiring the GIL, see the notes on `Python::new_pool`.
#[inline]
pub unsafe fn new() -> GILPool {
increment_gil_count();
// Update counts of PyObjects / Py that have been cloned or dropped since last acquisition
POOL.update_counts(Python::assume_gil_acquired());
GILPool {
start: OWNED_OBJECTS.try_with(|o| o.borrow().len()).ok(),
no_send: Unsendable::default(),
}
}
/// Get the Python token associated with this `GILPool`.
pub fn python(&self) -> Python {
unsafe { Python::assume_gil_acquired() }
}
}
impl Drop for GILPool {
fn drop(&mut self) {
if let Some(obj_len_start) = self.start {
let dropping_obj = OWNED_OBJECTS.with(|holder| {
// `holder` must be dropped before calling Py_DECREF, or Py_DECREF may call
// `GILPool::drop` recursively, resulting in invalid borrowing.
let mut holder = holder.borrow_mut();
if obj_len_start < holder.len() {
holder.split_off(obj_len_start)
} else {
Vec::new()
}
});
for obj in dropping_obj {
unsafe {
ffi::Py_DECREF(obj.as_ptr());
}
}
}
decrement_gil_count();
}
}
/// Register a Python object pointer inside the release pool, to have reference count increased
/// next time the GIL is acquired in pyo3.
///
/// If the GIL is held, the reference count will be increased immediately instead of being queued
/// for later.
///
/// # Safety
/// The object must be an owned Python reference.
pub unsafe fn register_incref(obj: NonNull<ffi::PyObject>) {
if gil_is_acquired() {
ffi::Py_INCREF(obj.as_ptr())
} else {
POOL.register_incref(obj);
}
}
/// Register a Python object pointer inside the release pool, to have reference count decreased
/// next time the GIL is acquired in pyo3.
///
/// If the GIL is held, the reference count will be decreased immediately instead of being queued
/// for later.
///
/// # Safety
/// The object must be an owned Python reference.
pub unsafe fn register_decref(obj: NonNull<ffi::PyObject>) {
if gil_is_acquired() {
ffi::Py_DECREF(obj.as_ptr())
} else {
POOL.register_decref(obj);
}
}
/// Register an owned object inside the GILPool.
///
/// # Safety
/// The object must be an owned Python reference.
pub unsafe fn register_owned(_py: Python, obj: NonNull<ffi::PyObject>) {
debug_assert!(gil_is_acquired());
// Ignores the error in case this function called from `atexit`.
let _ = OWNED_OBJECTS.try_with(|holder| holder.borrow_mut().push(obj));
}
/// Increment pyo3's internal GIL count - to be called whenever GILPool or GILGuard is created.
#[inline(always)]
fn increment_gil_count() {
// Ignores the error in case this function called from `atexit`.
let _ = GIL_COUNT.with(|c| c.set(c.get() + 1));
}
/// Decrement pyo3's internal GIL count - to be called whenever GILPool or GILGuard is dropped.
#[inline(always)]
fn decrement_gil_count() {
// Ignores the error in case this function called from `atexit`.
let _ = GIL_COUNT.try_with(|c| {
let current = c.get();
debug_assert!(
current > 0,
"Negative GIL count detected. Please report this error to the PyO3 repo as a bug."
);
c.set(current - 1);
});
}
/// Ensure the GIL is held, useful in implementation of APIs like PyErr::new where it's
/// inconvenient to force the user to acquire the GIL.
#[doc(hidden)]
pub fn ensure_gil() -> EnsureGIL {
if gil_is_acquired() {
EnsureGIL(None)
} else {
EnsureGIL(Some(GILGuard::acquire()))
}
}
/// Struct used internally which avoids acquiring the GIL where it's not necessary.
#[doc(hidden)]
pub struct EnsureGIL(Option<GILGuard>);
impl EnsureGIL {
/// Get the GIL token.
///
/// # Safety
/// If `self.0` is `None`, then this calls [Python::assume_gil_acquired].
/// Thus this method could be used to get access to a GIL token while the GIL is not held.
/// Care should be taken to only use the returned Python in contexts where it is certain the
/// GIL continues to be held.
pub unsafe fn python(&self) -> Python {
match &self.0 {
Some(gil) => gil.python(),
None => Python::assume_gil_acquired(),
}
}
}
#[cfg(test)]
mod test {
use super::{gil_is_acquired, GILPool, GIL_COUNT, OWNED_OBJECTS, POOL};
use crate::{ffi, gil, AsPyPointer, IntoPyPointer, PyObject, Python, ToPyObject};
use std::ptr::NonNull;
fn get_object(py: Python) -> PyObject {
// Convenience function for getting a single unique object, using `new_pool` so as to leave
// the original pool state unchanged.
let pool = unsafe { py.new_pool() };
let py = pool.python();
let obj = py.eval("object()", None, None).unwrap();
obj.to_object(py)
}
fn owned_object_count() -> usize {
OWNED_OBJECTS.with(|holder| holder.borrow().len())
}
#[test]
fn test_owned() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
let obj_ptr = obj.as_ptr();
// Ensure that obj does not get freed
let _ref = obj.clone_ref(py);
unsafe {
{
let pool = py.new_pool();
gil::register_owned(pool.python(), NonNull::new_unchecked(obj.into_ptr()));
assert_eq!(owned_object_count(), 1);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 2);
}
{
let _pool = py.new_pool();
assert_eq!(owned_object_count(), 0);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 1);
}
}
}
#[test]
fn test_owned_nested() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
// Ensure that obj does not get freed
let _ref = obj.clone_ref(py);
let obj_ptr = obj.as_ptr();
unsafe {
{
let _pool = py.new_pool();
assert_eq!(owned_object_count(), 0);
gil::register_owned(py, NonNull::new_unchecked(obj.into_ptr()));
assert_eq!(owned_object_count(), 1);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 2);
{
let _pool = py.new_pool();
let obj = get_object(py);
gil::register_owned(py, NonNull::new_unchecked(obj.into_ptr()));
assert_eq!(owned_object_count(), 2);
}
assert_eq!(owned_object_count(), 1);
}
{
assert_eq!(owned_object_count(), 0);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 1);
}
}
}
#[test]
fn test_pyobject_drop_with_gil_decreases_refcnt() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
// Ensure that obj does not get freed
let _ref = obj.clone_ref(py);
let obj_ptr = obj.as_ptr();
unsafe {
{
assert_eq!(owned_object_count(), 0);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 2);
}
// With the GIL held, obj can be dropped immediately
drop(obj);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 1);
}
}
#[test]
fn test_pyobject_drop_without_gil_doesnt_decrease_refcnt() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
// Ensure that obj does not get freed
let _ref = obj.clone_ref(py);
let obj_ptr = obj.as_ptr();
unsafe {
{
assert_eq!(owned_object_count(), 0);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 2);
}
// Without the GIL held, obj cannot be dropped until the next GIL acquire
drop(gil);
drop(obj);
assert_eq!(ffi::Py_REFCNT(obj_ptr), 2);
{
// Next time the GIL is acquired, the object is released
let _gil = Python::acquire_gil();
assert_eq!(ffi::Py_REFCNT(obj_ptr), 1);
}
}
}
#[test]
fn test_gil_counts() {
// Check GILGuard and GILPool both increase counts correctly
let get_gil_count = || GIL_COUNT.with(|c| c.get());
assert_eq!(get_gil_count(), 0);
let gil = Python::acquire_gil();
assert_eq!(get_gil_count(), 1);
assert_eq!(get_gil_count(), 1);
let pool = unsafe { GILPool::new() };
assert_eq!(get_gil_count(), 2);
let pool2 = unsafe { GILPool::new() };
assert_eq!(get_gil_count(), 3);
drop(pool);
assert_eq!(get_gil_count(), 2);
// Creating a new GILGuard should not increment the gil count if a GILPool already exists
let gil2 = Python::acquire_gil();
assert_eq!(get_gil_count(), 2);
drop(pool2);
assert_eq!(get_gil_count(), 1);
drop(gil2);
assert_eq!(get_gil_count(), 1);
drop(gil);
assert_eq!(get_gil_count(), 0);
}
#[test]
fn test_allow_threads() {
// allow_threads should temporarily release GIL in PyO3's internal tracking too.
let gil = Python::acquire_gil();
let py = gil.python();
assert!(gil_is_acquired());
py.allow_threads(move || {
assert!(!gil_is_acquired());
let gil = Python::acquire_gil();
assert!(gil_is_acquired());
drop(gil);
assert!(!gil_is_acquired());
});
assert!(gil_is_acquired());
}
#[test]
fn dropping_gil_does_not_invalidate_references() {
// Acquiring GIL for the second time should be safe - see #864
let gil = Python::acquire_gil();
let py = gil.python();
let obj;
let gil2 = Python::acquire_gil();
obj = py.eval("object()", None, None).unwrap();
drop(gil2);
// After gil2 drops, obj should still have a reference count of one
assert_eq!(obj.get_refcnt(), 1);
}
#[test]
fn test_clone_with_gil() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
let count = obj.get_refcnt(py);
// Cloning with the GIL should increase reference count immediately
#[allow(clippy::redundant_clone)]
let c = obj.clone();
assert_eq!(count + 1, c.get_refcnt(py));
}
#[test]
fn test_clone_without_gil() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
let count = obj.get_refcnt(py);
// Cloning without GIL should not update reference count
drop(gil);
let c = obj.clone();
assert_eq!(
count,
obj.get_refcnt(unsafe { Python::assume_gil_acquired() })
);
// Acquring GIL will clear this pending change
let gil = Python::acquire_gil();
let py = gil.python();
// Total reference count should be one higher
assert_eq!(count + 1, obj.get_refcnt(py));
// Clone dropped
drop(c);
// Overall count is now back to the original, and should be no pending change
assert_eq!(count, obj.get_refcnt(py));
}
#[test]
fn test_clone_in_other_thread() {
let gil = Python::acquire_gil();
let py = gil.python();
let obj = get_object(py);
let count = obj.get_refcnt(py);
// Move obj to a thread which does not have the GIL, and clone it
let t = std::thread::spawn(move || {
// Cloning without GIL should not update reference count
#[allow(clippy::redundant_clone)]
let _ = obj.clone();
assert_eq!(
count,
obj.get_refcnt(unsafe { Python::assume_gil_acquired() })
);
// Return obj so original thread can continue to use
obj
});
let obj = t.join().unwrap();
let ptr = NonNull::new(obj.as_ptr()).unwrap();
// The pointer should appear once in the incref pool, and once in the
// decref pool (for the clone being created and also dropped)
assert_eq!(&*POOL.pointers_to_incref.lock(), &vec![ptr]);
assert_eq!(&*POOL.pointers_to_decref.lock(), &vec![ptr]);
// Re-acquring GIL will clear these pending changes
drop(gil);
let gil = Python::acquire_gil();
assert!(POOL.pointers_to_incref.lock().is_empty());
assert!(POOL.pointers_to_decref.lock().is_empty());
// Overall count is still unchanged
assert_eq!(count, obj.get_refcnt(gil.python()));
}
#[test]
fn test_update_counts_does_not_deadlock() {
// update_counts can run arbitrary Python code during Py_DECREF.
// if the locking is implemented incorrectly, it will deadlock.
let gil = Python::acquire_gil();
let obj = get_object(gil.python());
unsafe {
unsafe extern "C" fn capsule_drop(capsule: *mut ffi::PyObject) {
// This line will implicitly call update_counts
// -> and so cause deadlock if update_counts is not handling recursion correctly.
let pool = GILPool::new();
// Rebuild obj so that it can be dropped
PyObject::from_owned_ptr(
pool.python(),
ffi::PyCapsule_GetPointer(capsule, std::ptr::null()) as _,
);
}
let ptr = obj.into_ptr();
let capsule = ffi::PyCapsule_New(ptr as _, std::ptr::null(), Some(capsule_drop));
POOL.register_decref(NonNull::new(capsule).unwrap());
// Updating the counts will call decref on the capsule, which calls capsule_drop
POOL.update_counts(gil.python())
}
}
}