// Copyright (c) 2015 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #![feature(core)] // used for a lot of low-level stuff #![feature(unsafe_no_drop_flag)] // crucial so that PyObject<'p> is binary compatible with *mut ffi::PyObject #![feature(filling_drop)] // necessary to avoid segfault with unsafe_no_drop_flag #![feature(optin_builtin_traits)] // for opting out of Sync/Send #![feature(slice_patterns)] // for tuple_conversion macros #![feature(utf8_error)] // for translating Utf8Error to python exception #![allow(unused_imports, unused_variables)] //! Rust bindings to the python interpreter. //! //! # Ownership and Lifetimes //! In python, all objects are implicitly reference counted. //! In rust, we will use the `PyObject` type to represent a reference to a python object. //! //! Because all python objects potentially have multiple owners, the concept //! concept of rust mutability does not apply to python objects. //! As a result, this API will allow mutating python objects even if they are not stored //! in a mutable rust variable. //! //! The python interpreter uses a global interpreter lock (GIL) //! to ensure thread-safety. //! This API uses the lifetime parameter `PyObject<'p>` to ensure that python objects cannot //! be accessed without holding the GIL. //! Throughout this library, the lifetime `'p` always refers to the lifetime of the python interpreter. //! //! When accessing existing objects, the lifetime on `PyObject<'p>` is sufficient to ensure that the GIL //! is held by the current code. But we also need to ensure that the GIL is held when creating new objects. //! For this purpose, this library uses the marker type `Python<'p>`, //! which acts like a reference to the whole python interpreter. //! //! You can obtain a `Python<'p>` instance by acquiring the GIL, or by calling `python()` //! on any existing python object. //! //! # Error Handling //! The vast majority of operations in this library will return `PyResult<'p, ...>`. //! This is an alias for the type `Result<..., PyErr<'p>>`. //! //! A `PyErr` represents a python exception. Errors within the rust-cpython library are //! also exposed as python exceptions. //! //! # Example //! ``` //! extern crate cpython; //! //! use cpython::{PythonObject, Python}; //! //! fn main() { //! let gil_guard = Python::acquire_gil(); //! let py = gil_guard.python(); //! let sys = py.import("sys").unwrap(); //! let version = sys.get("version").unwrap().extract::().unwrap(); //! println!("Hello Python {}", version); //! } //! ``` extern crate libc; #[cfg(feature="python27-sys")] extern crate python27_sys as ffi; #[cfg(feature="python3-sys")] extern crate python3_sys as ffi; pub use ffi::Py_ssize_t; pub use err::{PyErr, PyResult}; pub use objects::*; pub use python::{Python, PythonObject, PythonObjectWithCheckedDowncast, PythonObjectWithTypeObject, ToPythonPointer}; pub use pythonrun::{GILGuard, prepare_freethreaded_python}; pub use conversion::{FromPyObject, ToPyObject}; pub use objectprotocol::{ObjectProtocol}; /// Constructs a `&'static CStr` literal. macro_rules! cstr( ($s: tt) => ( // TODO: verify that $s is a string literal without nuls unsafe { ::std::ffi::CStr::from_ptr(concat!($s, "\0").as_ptr() as *const _) } ); ); mod python; mod err; mod conversion; mod objects; mod objectprotocol; mod pythonrun; /// Private re-exports for macros. Do not use. #[doc(hidden)] pub mod _detail { pub use ffi; pub use libc; pub use err::from_owned_ptr_or_panic; } /// Expands to an `extern "C"` function that allows python to load /// the rust code as a python extension module. /// /// The macro takes three arguments: /// /// 1. The module name as a string literal. /// 2. The name of the init function as an identifier. /// The function must be named `init$module_name` so that python 2.7 can load the module. /// Note: this parameter will be removed in a future version /// (once Rust supports `concat_ident!` as function name). /// 3. A function or lambda of type `Fn(Python<'p>, &PyModule<'p>) -> PyResult<'p, ()>`. /// This function will be called when the module is imported, and is responsible /// for adding the module's members. /// /// # Example /// ``` /// #![crate_type = "dylib"] /// #[macro_use] extern crate cpython; /// use cpython::{Python, PyResult, PyObject, PyTuple}; /// /// py_module_initializer!("example", initexample, |py, m| { /// try!(m.add("__doc__", "Module documentation string")); /// try!(m.add("run", py_func!(py, run))); /// Ok(()) /// }); /// /// fn run<'p>(py: Python<'p>, args: &PyTuple<'p>) -> PyResult<'p, PyObject<'p>> { /// println!("Rust says: Hello Python!"); /// Ok(py.None()) /// } /// # fn main() {} /// ``` /// The code must be compiled into a file `example.so`. /// /// ```bash /// rustc example.rs -o example.so /// ``` /// It can then be imported into python: /// /// ```python /// >>> import example /// >>> example.run() /// Rust says: Hello Python! /// ``` /// #[macro_export] macro_rules! py_module_initializer { ($name: tt, $init_funcname: ident, $init: expr) => { #[no_mangle] pub extern "C" fn $init_funcname() { let py = unsafe { $crate::Python::assume_gil_acquired() }; let name = unsafe { ::std::ffi::CStr::from_ptr(concat!($name, "\0").as_ptr() as *const _) }; match $crate::PyModule::_init(py, name, $init) { Ok(()) => (), Err(e) => e.restore() } } } } /// Creates a python callable object that invokes a Rust function. /// /// Arguments: /// /// 1. The `Python<'p>` marker, to ensure this macro is only used while holding the GIL. /// 2. A Rust function with the signature `<'p>(Python<'p>, &PyTuple<'p>) -> PyResult<'p, T>` /// for some `T` that implements `ToPyObject`. /// /// See `py_module_initializer!` for example usage. /// /// # Panic /// May panic when python runs out of memory. #[macro_export] macro_rules! py_func { ($py: expr, $f: expr) => ({ unsafe extern "C" fn wrap_py_func (_slf: *mut $crate::_detail::ffi::PyObject, args: *mut $crate::_detail::ffi::PyObject) -> *mut $crate::_detail::ffi::PyObject { let py = $crate::Python::assume_gil_acquired(); let args = $crate::PyObject::from_borrowed_ptr(py, args); let args: &$crate::PyTuple = $crate::PythonObject::unchecked_downcast_borrow_from(&args); match $f(py, args) { Ok(val) => { let obj = $crate::ToPyObject::into_py_object(val, py); return $crate::ToPythonPointer::steal_ptr(obj); } Err(e) => { e.restore(); return ::std::ptr::null_mut(); } } } static mut method_def: $crate::_detail::ffi::PyMethodDef = $crate::_detail::ffi::PyMethodDef { //ml_name: bytes!(stringify!($f), "\0"), ml_name: b"\0" as *const u8 as *const $crate::_detail::libc::c_char, ml_meth: Some(wrap_py_func), ml_flags: $crate::_detail::ffi::METH_VARARGS, ml_doc: 0 as *const $crate::_detail::libc::c_char }; let py: Python = $py; unsafe { let obj = $crate::_detail::ffi::PyCFunction_New(&mut method_def, ::std::ptr::null_mut()); $crate::_detail::from_owned_ptr_or_panic(py, obj) } }) }