#![allow(deprecated)] // for deprecated protocol methods use pyo3::class::basic::CompareOp; use pyo3::class::*; use pyo3::prelude::*; use pyo3::py_run; use pyo3::PyNativeType; mod common; #[pyclass] struct UnaryArithmetic { inner: f64, } impl UnaryArithmetic { fn new(value: f64) -> Self { UnaryArithmetic { inner: value } } } #[pyproto] impl PyObjectProtocol for UnaryArithmetic { fn __repr__(&self) -> String { format!("UA({})", self.inner) } } #[pyproto] impl PyNumberProtocol for UnaryArithmetic { fn __neg__(&self) -> Self { Self::new(-self.inner) } fn __pos__(&self) -> Self { Self::new(self.inner) } fn __abs__(&self) -> Self { Self::new(self.inner.abs()) } fn __round__(&self, _ndigits: Option) -> Self { Self::new(self.inner.round()) } } #[test] fn unary_arithmetic() { let gil = Python::acquire_gil(); let py = gil.python(); let c = PyCell::new(py, UnaryArithmetic::new(2.7)).unwrap(); py_run!(py, c, "assert repr(-c) == 'UA(-2.7)'"); py_run!(py, c, "assert repr(+c) == 'UA(2.7)'"); py_run!(py, c, "assert repr(abs(c)) == 'UA(2.7)'"); py_run!(py, c, "assert repr(round(c)) == 'UA(3)'"); py_run!(py, c, "assert repr(round(c, 1)) == 'UA(3)'"); } #[pyclass] struct BinaryArithmetic {} #[pyproto] impl PyObjectProtocol for BinaryArithmetic { fn __repr__(&self) -> &'static str { "BA" } } #[pyclass] struct InPlaceOperations { value: u32, } #[pyproto] impl PyObjectProtocol for InPlaceOperations { fn __repr__(&self) -> String { format!("IPO({:?})", self.value) } } #[pyproto] impl PyNumberProtocol for InPlaceOperations { fn __iadd__(&mut self, other: u32) { self.value += other; } fn __isub__(&mut self, other: u32) { self.value -= other; } fn __imul__(&mut self, other: u32) { self.value *= other; } fn __ilshift__(&mut self, other: u32) { self.value <<= other; } fn __irshift__(&mut self, other: u32) { self.value >>= other; } fn __iand__(&mut self, other: u32) { self.value &= other; } fn __ixor__(&mut self, other: u32) { self.value ^= other; } fn __ior__(&mut self, other: u32) { self.value |= other; } fn __ipow__(&mut self, other: u32) { self.value = self.value.pow(other); } } #[test] fn inplace_operations() { let gil = Python::acquire_gil(); let py = gil.python(); let init = |value, code| { let c = PyCell::new(py, InPlaceOperations { value }).unwrap(); py_run!(py, c, code); }; init(0, "d = c; c += 1; assert repr(c) == repr(d) == 'IPO(1)'"); init(10, "d = c; c -= 1; assert repr(c) == repr(d) == 'IPO(9)'"); init(3, "d = c; c *= 3; assert repr(c) == repr(d) == 'IPO(9)'"); init(3, "d = c; c <<= 2; assert repr(c) == repr(d) == 'IPO(12)'"); init(12, "d = c; c >>= 2; assert repr(c) == repr(d) == 'IPO(3)'"); init(12, "d = c; c &= 10; assert repr(c) == repr(d) == 'IPO(8)'"); init(12, "d = c; c |= 3; assert repr(c) == repr(d) == 'IPO(15)'"); init(12, "d = c; c ^= 5; assert repr(c) == repr(d) == 'IPO(9)'"); init(3, "d = c; c **= 4; assert repr(c) == repr(d) == 'IPO(81)'"); init( 3, "d = c; c.__ipow__(4); assert repr(c) == repr(d) == 'IPO(81)'", ); } #[pyproto] impl PyNumberProtocol for BinaryArithmetic { fn __add__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} + {:?}", lhs, rhs) } fn __sub__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} - {:?}", lhs, rhs) } fn __mul__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} * {:?}", lhs, rhs) } fn __lshift__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} << {:?}", lhs, rhs) } fn __rshift__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} >> {:?}", lhs, rhs) } fn __and__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} & {:?}", lhs, rhs) } fn __xor__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} ^ {:?}", lhs, rhs) } fn __or__(lhs: &PyAny, rhs: &PyAny) -> String { format!("{:?} | {:?}", lhs, rhs) } fn __pow__(lhs: &PyAny, rhs: &PyAny, mod_: Option) -> String { format!("{:?} ** {:?} (mod: {:?})", lhs, rhs, mod_) } } #[test] fn binary_arithmetic() { let gil = Python::acquire_gil(); let py = gil.python(); let c = PyCell::new(py, BinaryArithmetic {}).unwrap(); py_run!(py, c, "assert c + c == 'BA + BA'"); py_run!(py, c, "assert c.__add__(c) == 'BA + BA'"); py_run!(py, c, "assert c + 1 == 'BA + 1'"); py_run!(py, c, "assert 1 + c == '1 + BA'"); py_run!(py, c, "assert c - 1 == 'BA - 1'"); py_run!(py, c, "assert 1 - c == '1 - BA'"); py_run!(py, c, "assert c * 1 == 'BA * 1'"); py_run!(py, c, "assert 1 * c == '1 * BA'"); py_run!(py, c, "assert c << 1 == 'BA << 1'"); py_run!(py, c, "assert 1 << c == '1 << BA'"); py_run!(py, c, "assert c >> 1 == 'BA >> 1'"); py_run!(py, c, "assert 1 >> c == '1 >> BA'"); py_run!(py, c, "assert c & 1 == 'BA & 1'"); py_run!(py, c, "assert 1 & c == '1 & BA'"); py_run!(py, c, "assert c ^ 1 == 'BA ^ 1'"); py_run!(py, c, "assert 1 ^ c == '1 ^ BA'"); py_run!(py, c, "assert c | 1 == 'BA | 1'"); py_run!(py, c, "assert 1 | c == '1 | BA'"); py_run!(py, c, "assert c ** 1 == 'BA ** 1 (mod: None)'"); py_run!(py, c, "assert 1 ** c == '1 ** BA (mod: None)'"); py_run!(py, c, "assert pow(c, 1, 100) == 'BA ** 1 (mod: Some(100))'"); } #[pyclass] struct RhsArithmetic {} #[pyproto] impl PyNumberProtocol for RhsArithmetic { fn __radd__(&self, other: &PyAny) -> String { format!("{:?} + RA", other) } fn __rsub__(&self, other: &PyAny) -> String { format!("{:?} - RA", other) } fn __rmul__(&self, other: &PyAny) -> String { format!("{:?} * RA", other) } fn __rlshift__(&self, other: &PyAny) -> String { format!("{:?} << RA", other) } fn __rrshift__(&self, other: &PyAny) -> String { format!("{:?} >> RA", other) } fn __rand__(&self, other: &PyAny) -> String { format!("{:?} & RA", other) } fn __rxor__(&self, other: &PyAny) -> String { format!("{:?} ^ RA", other) } fn __ror__(&self, other: &PyAny) -> String { format!("{:?} | RA", other) } fn __rpow__(&self, other: &PyAny, _mod: Option<&'p PyAny>) -> String { format!("{:?} ** RA", other) } } #[test] fn rhs_arithmetic() { let gil = Python::acquire_gil(); let py = gil.python(); let c = PyCell::new(py, RhsArithmetic {}).unwrap(); py_run!(py, c, "assert c.__radd__(1) == '1 + RA'"); py_run!(py, c, "assert 1 + c == '1 + RA'"); py_run!(py, c, "assert c.__rsub__(1) == '1 - RA'"); py_run!(py, c, "assert 1 - c == '1 - RA'"); py_run!(py, c, "assert c.__rmul__(1) == '1 * RA'"); py_run!(py, c, "assert 1 * c == '1 * RA'"); py_run!(py, c, "assert c.__rlshift__(1) == '1 << RA'"); py_run!(py, c, "assert 1 << c == '1 << RA'"); py_run!(py, c, "assert c.__rrshift__(1) == '1 >> RA'"); py_run!(py, c, "assert 1 >> c == '1 >> RA'"); py_run!(py, c, "assert c.__rand__(1) == '1 & RA'"); py_run!(py, c, "assert 1 & c == '1 & RA'"); py_run!(py, c, "assert c.__rxor__(1) == '1 ^ RA'"); py_run!(py, c, "assert 1 ^ c == '1 ^ RA'"); py_run!(py, c, "assert c.__ror__(1) == '1 | RA'"); py_run!(py, c, "assert 1 | c == '1 | RA'"); py_run!(py, c, "assert c.__rpow__(1) == '1 ** RA'"); py_run!(py, c, "assert 1 ** c == '1 ** RA'"); } #[pyclass] struct LhsAndRhs {} impl std::fmt::Debug for LhsAndRhs { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "LR") } } #[pyproto] impl PyNumberProtocol for LhsAndRhs { fn __add__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} + {:?}", lhs, rhs) } fn __sub__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} - {:?}", lhs, rhs) } fn __mul__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} * {:?}", lhs, rhs) } fn __lshift__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} << {:?}", lhs, rhs) } fn __rshift__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} >> {:?}", lhs, rhs) } fn __and__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} & {:?}", lhs, rhs) } fn __xor__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} ^ {:?}", lhs, rhs) } fn __or__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} | {:?}", lhs, rhs) } fn __pow__(lhs: PyRef, rhs: &PyAny, _mod: Option) -> String { format!("{:?} ** {:?}", lhs, rhs) } fn __matmul__(lhs: PyRef, rhs: &PyAny) -> String { format!("{:?} @ {:?}", lhs, rhs) } fn __radd__(&self, other: &PyAny) -> String { format!("{:?} + RA", other) } fn __rsub__(&self, other: &PyAny) -> String { format!("{:?} - RA", other) } fn __rmul__(&self, other: &PyAny) -> String { format!("{:?} * RA", other) } fn __rlshift__(&self, other: &PyAny) -> String { format!("{:?} << RA", other) } fn __rrshift__(&self, other: &PyAny) -> String { format!("{:?} >> RA", other) } fn __rand__(&self, other: &PyAny) -> String { format!("{:?} & RA", other) } fn __rxor__(&self, other: &PyAny) -> String { format!("{:?} ^ RA", other) } fn __ror__(&self, other: &PyAny) -> String { format!("{:?} | RA", other) } fn __rpow__(&self, other: &PyAny, _mod: Option<&'p PyAny>) -> String { format!("{:?} ** RA", other) } fn __rmatmul__(&self, other: &PyAny) -> String { format!("{:?} @ RA", other) } } #[pyproto] impl PyObjectProtocol for LhsAndRhs { fn __repr__(&self) -> &'static str { "BA" } } #[test] fn lhs_fellback_to_rhs() { let gil = Python::acquire_gil(); let py = gil.python(); let c = PyCell::new(py, LhsAndRhs {}).unwrap(); // If the light hand value is `LhsAndRhs`, LHS is used. py_run!(py, c, "assert c + 1 == 'LR + 1'"); py_run!(py, c, "assert c - 1 == 'LR - 1'"); py_run!(py, c, "assert c * 1 == 'LR * 1'"); py_run!(py, c, "assert c << 1 == 'LR << 1'"); py_run!(py, c, "assert c >> 1 == 'LR >> 1'"); py_run!(py, c, "assert c & 1 == 'LR & 1'"); py_run!(py, c, "assert c ^ 1 == 'LR ^ 1'"); py_run!(py, c, "assert c | 1 == 'LR | 1'"); py_run!(py, c, "assert c ** 1 == 'LR ** 1'"); py_run!(py, c, "assert c @ 1 == 'LR @ 1'"); // Fellback to RHS because of type mismatching py_run!(py, c, "assert 1 + c == '1 + RA'"); py_run!(py, c, "assert 1 - c == '1 - RA'"); py_run!(py, c, "assert 1 * c == '1 * RA'"); py_run!(py, c, "assert 1 << c == '1 << RA'"); py_run!(py, c, "assert 1 >> c == '1 >> RA'"); py_run!(py, c, "assert 1 & c == '1 & RA'"); py_run!(py, c, "assert 1 ^ c == '1 ^ RA'"); py_run!(py, c, "assert 1 | c == '1 | RA'"); py_run!(py, c, "assert 1 ** c == '1 ** RA'"); py_run!(py, c, "assert 1 @ c == '1 @ RA'"); } #[pyclass] struct RichComparisons {} #[pyproto] impl PyObjectProtocol for RichComparisons { fn __repr__(&self) -> &'static str { "RC" } fn __richcmp__(&self, other: &PyAny, op: CompareOp) -> String { match op { CompareOp::Lt => format!("{} < {:?}", self.__repr__(), other), CompareOp::Le => format!("{} <= {:?}", self.__repr__(), other), CompareOp::Eq => format!("{} == {:?}", self.__repr__(), other), CompareOp::Ne => format!("{} != {:?}", self.__repr__(), other), CompareOp::Gt => format!("{} > {:?}", self.__repr__(), other), CompareOp::Ge => format!("{} >= {:?}", self.__repr__(), other), } } } #[pyclass] struct RichComparisons2 {} #[pyproto] impl PyObjectProtocol for RichComparisons2 { fn __repr__(&self) -> &'static str { "RC2" } fn __richcmp__(&self, other: &PyAny, op: CompareOp) -> PyObject { match op { CompareOp::Eq => true.into_py(other.py()), CompareOp::Ne => false.into_py(other.py()), _ => other.py().NotImplemented(), } } } #[test] fn rich_comparisons() { let gil = Python::acquire_gil(); let py = gil.python(); let c = PyCell::new(py, RichComparisons {}).unwrap(); py_run!(py, c, "assert (c < c) == 'RC < RC'"); py_run!(py, c, "assert (c < 1) == 'RC < 1'"); py_run!(py, c, "assert (1 < c) == 'RC > 1'"); py_run!(py, c, "assert (c <= c) == 'RC <= RC'"); py_run!(py, c, "assert (c <= 1) == 'RC <= 1'"); py_run!(py, c, "assert (1 <= c) == 'RC >= 1'"); py_run!(py, c, "assert (c == c) == 'RC == RC'"); py_run!(py, c, "assert (c == 1) == 'RC == 1'"); py_run!(py, c, "assert (1 == c) == 'RC == 1'"); py_run!(py, c, "assert (c != c) == 'RC != RC'"); py_run!(py, c, "assert (c != 1) == 'RC != 1'"); py_run!(py, c, "assert (1 != c) == 'RC != 1'"); py_run!(py, c, "assert (c > c) == 'RC > RC'"); py_run!(py, c, "assert (c > 1) == 'RC > 1'"); py_run!(py, c, "assert (1 > c) == 'RC < 1'"); py_run!(py, c, "assert (c >= c) == 'RC >= RC'"); py_run!(py, c, "assert (c >= 1) == 'RC >= 1'"); py_run!(py, c, "assert (1 >= c) == 'RC <= 1'"); } #[test] fn rich_comparisons_python_3_type_error() { let gil = Python::acquire_gil(); let py = gil.python(); let c2 = PyCell::new(py, RichComparisons2 {}).unwrap(); py_expect_exception!(py, c2, "c2 < c2", PyTypeError); py_expect_exception!(py, c2, "c2 < 1", PyTypeError); py_expect_exception!(py, c2, "1 < c2", PyTypeError); py_expect_exception!(py, c2, "c2 <= c2", PyTypeError); py_expect_exception!(py, c2, "c2 <= 1", PyTypeError); py_expect_exception!(py, c2, "1 <= c2", PyTypeError); py_run!(py, c2, "assert (c2 == c2) == True"); py_run!(py, c2, "assert (c2 == 1) == True"); py_run!(py, c2, "assert (1 == c2) == True"); py_run!(py, c2, "assert (c2 != c2) == False"); py_run!(py, c2, "assert (c2 != 1) == False"); py_run!(py, c2, "assert (1 != c2) == False"); py_expect_exception!(py, c2, "c2 > c2", PyTypeError); py_expect_exception!(py, c2, "c2 > 1", PyTypeError); py_expect_exception!(py, c2, "1 > c2", PyTypeError); py_expect_exception!(py, c2, "c2 >= c2", PyTypeError); py_expect_exception!(py, c2, "c2 >= 1", PyTypeError); py_expect_exception!(py, c2, "1 >= c2", PyTypeError); } // Checks that binary operations for which the arguments don't match the // required type, return NotImplemented. mod return_not_implemented { use super::*; #[pyclass] struct RichComparisonToSelf {} #[pyproto] impl<'p> PyObjectProtocol<'p> for RichComparisonToSelf { fn __repr__(&self) -> &'static str { "RC_Self" } fn __richcmp__(&self, other: PyRef<'p, Self>, _op: CompareOp) -> PyObject { other.py().None() } } #[pyproto] impl<'p> PyNumberProtocol<'p> for RichComparisonToSelf { fn __add__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __sub__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __mul__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __matmul__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __truediv__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __floordiv__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __mod__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __pow__(lhs: &'p PyAny, _other: u8, _modulo: Option) -> &'p PyAny { lhs } fn __lshift__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __rshift__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __divmod__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __and__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __or__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } fn __xor__(lhs: &'p PyAny, _other: PyRef<'p, Self>) -> &'p PyAny { lhs } // Inplace assignments fn __iadd__(&'p mut self, _other: PyRef<'p, Self>) {} fn __isub__(&'p mut self, _other: PyRef<'p, Self>) {} fn __imul__(&'p mut self, _other: PyRef<'p, Self>) {} fn __imatmul__(&'p mut self, _other: PyRef<'p, Self>) {} fn __itruediv__(&'p mut self, _other: PyRef<'p, Self>) {} fn __ifloordiv__(&'p mut self, _other: PyRef<'p, Self>) {} fn __imod__(&'p mut self, _other: PyRef<'p, Self>) {} fn __ipow__(&'p mut self, _other: PyRef<'p, Self>) {} fn __ilshift__(&'p mut self, _other: PyRef<'p, Self>) {} fn __irshift__(&'p mut self, _other: PyRef<'p, Self>) {} fn __iand__(&'p mut self, _other: PyRef<'p, Self>) {} fn __ior__(&'p mut self, _other: PyRef<'p, Self>) {} fn __ixor__(&'p mut self, _other: PyRef<'p, Self>) {} } fn _test_binary_dunder(dunder: &str) { let gil = Python::acquire_gil(); let py = gil.python(); let c2 = PyCell::new(py, RichComparisonToSelf {}).unwrap(); py_run!( py, c2, &format!( "class Other: pass\nassert c2.__{}__(Other()) is NotImplemented", dunder ) ); } fn _test_binary_operator(operator: &str, dunder: &str) { _test_binary_dunder(dunder); let gil = Python::acquire_gil(); let py = gil.python(); let c2 = PyCell::new(py, RichComparisonToSelf {}).unwrap(); py_expect_exception!( py, c2, &format!("class Other: pass\nc2 {} Other()", operator), PyTypeError ); } fn _test_inplace_binary_operator(operator: &str, dunder: &str) { _test_binary_operator(operator, dunder); } #[test] fn equality() { _test_binary_dunder("eq"); _test_binary_dunder("ne"); } #[test] fn ordering() { _test_binary_operator("<", "lt"); _test_binary_operator("<=", "le"); _test_binary_operator(">", "gt"); _test_binary_operator(">=", "ge"); } #[test] fn bitwise() { _test_binary_operator("&", "and"); _test_binary_operator("|", "or"); _test_binary_operator("^", "xor"); _test_binary_operator("<<", "lshift"); _test_binary_operator(">>", "rshift"); } #[test] fn arith() { _test_binary_operator("+", "add"); _test_binary_operator("-", "sub"); _test_binary_operator("*", "mul"); _test_binary_operator("@", "matmul"); _test_binary_operator("/", "truediv"); _test_binary_operator("//", "floordiv"); _test_binary_operator("%", "mod"); _test_binary_operator("**", "pow"); } #[test] #[ignore] fn reverse_arith() { _test_binary_dunder("radd"); _test_binary_dunder("rsub"); _test_binary_dunder("rmul"); _test_binary_dunder("rmatmul"); _test_binary_dunder("rtruediv"); _test_binary_dunder("rfloordiv"); _test_binary_dunder("rmod"); _test_binary_dunder("rpow"); } #[test] fn inplace_bitwise() { _test_inplace_binary_operator("&=", "iand"); _test_inplace_binary_operator("|=", "ior"); _test_inplace_binary_operator("^=", "ixor"); _test_inplace_binary_operator("<<=", "ilshift"); _test_inplace_binary_operator(">>=", "irshift"); } #[test] fn inplace_arith() { _test_inplace_binary_operator("+=", "iadd"); _test_inplace_binary_operator("-=", "isub"); _test_inplace_binary_operator("*=", "imul"); _test_inplace_binary_operator("@=", "imatmul"); _test_inplace_binary_operator("/=", "itruediv"); _test_inplace_binary_operator("//=", "ifloordiv"); _test_inplace_binary_operator("%=", "imod"); _test_inplace_binary_operator("**=", "ipow"); } }