// Copyright (c) 2017-present PyO3 Project and Contributors // // based on Daniel Grunwald's https://github.com/dgrunwald/rust-cpython use std::{sync, rc, marker, mem}; use spin; use ffi; use python::Python; use objects::PyObjectRef; static START: sync::Once = sync::ONCE_INIT; static START_PYO3: sync::Once = sync::ONCE_INIT; /// Prepares the use of Python in a free-threaded context. /// /// If the Python interpreter is not already initialized, this function /// will initialize it with disabled signal handling /// (Python will not raise the `KeyboardInterrupt` exception). /// Python signal handling depends on the notion of a 'main thread', which must be /// the thread that initializes the Python interpreter. /// /// If both the Python interpreter and Python threading are already initialized, /// this function has no effect. /// /// # Panic /// If the Python interpreter is initialized but Python threading is not, /// a panic occurs. /// It is not possible to safely access the Python runtime unless the main /// thread (the thread which originally initialized Python) also initializes /// threading. /// /// When writing an extension module, the `py_module_initializer!` macro /// will ensure that Python threading is initialized. /// pub fn prepare_freethreaded_python() { // Protect against race conditions when Python is not yet initialized // and multiple threads concurrently call 'prepare_freethreaded_python()'. // Note that we do not protect against concurrent initialization of the Python runtime // by other users of the Python C API. START.call_once(|| unsafe { if ffi::Py_IsInitialized() != 0 { // If Python is already initialized, we expect Python threading to also be initialized, // as we can't make the existing Python main thread acquire the GIL. assert!(ffi::PyEval_ThreadsInitialized() != 0); } else { // If Python isn't initialized yet, we expect that Python threading isn't initialized either. assert!(ffi::PyEval_ThreadsInitialized() == 0); // Initialize Python. // We use Py_InitializeEx() with initsigs=0 to disable Python signal handling. // Signal handling depends on the notion of a 'main thread', which doesn't exist in this case. // Note that the 'main thread' notion in Python isn't documented properly; // and running Python without one is not officially supported. ffi::Py_InitializeEx(0); ffi::PyEval_InitThreads(); // PyEval_InitThreads() will acquire the GIL, // but we don't want to hold it at this point // (it's not acquired in the other code paths) // So immediately release the GIL: let _thread_state = ffi::PyEval_SaveThread(); // Note that the PyThreadState returned by PyEval_SaveThread is also held in TLS by the Python runtime, // and will be restored by PyGILState_Ensure. } prepare_pyo3_library(); }); } #[doc(hidden)] pub fn prepare_pyo3_library() { START_PYO3.call_once(|| unsafe { // initialize release pool POINTERS = Box::into_raw(Box::new(Pointers::new())); }); } /// RAII type that represents the Global Interpreter Lock acquisition. /// /// # Example /// ``` /// use pyo3::Python; /// /// { /// let gil_guard = Python::acquire_gil(); /// let py = gil_guard.python(); /// } // GIL is released when gil_guard is dropped /// ``` #[must_use] pub struct GILGuard { owned: usize, borrowed: usize, gstate: ffi::PyGILState_STATE, // hack to opt out of Send on stable rust, which doesn't // have negative impls no_send: marker::PhantomData> } /// The Drop implementation for `GILGuard` will release the GIL. impl Drop for GILGuard { fn drop(&mut self) { unsafe { let pool: &'static mut Pointers = mem::transmute(POINTERS); pool.drain(self.owned, self.borrowed, true); ffi::PyGILState_Release(self.gstate); } } } struct Pointers { owned: Vec<*mut ffi::PyObject>, borrowed: Vec<*mut ffi::PyObject>, pointers: *mut Vec<*mut ffi::PyObject>, p: spin::Mutex<*mut Vec<*mut ffi::PyObject>>, } impl Pointers { fn new() -> Pointers { Pointers { owned: Vec::with_capacity(250), borrowed: Vec::with_capacity(250), pointers: Box::into_raw(Box::new(Vec::with_capacity(250))), p: spin::Mutex::new(Box::into_raw(Box::new(Vec::with_capacity(250)))), } } unsafe fn release_pointers(&mut self) { let mut v = self.p.lock(); // vec of pointers let ptr = *v; let vec: &'static mut Vec<*mut ffi::PyObject> = mem::transmute(ptr); if vec.is_empty() { return } // switch vectors *v = self.pointers; self.pointers = ptr; drop(v); // release py objects for ptr in vec.iter_mut() { ffi::Py_DECREF(*ptr); } vec.set_len(0); } pub unsafe fn drain(&mut self, owned: usize, borrowed: usize, pointers: bool) { let len = self.owned.len(); if owned < len { for ptr in &mut self.owned[owned..len] { ffi::Py_DECREF(*ptr); } self.owned.set_len(owned); } let len = self.borrowed.len(); if borrowed < len { self.borrowed.set_len(borrowed); } if pointers { self.release_pointers(); } } } static mut POINTERS: *mut Pointers = 0 as *mut _; pub struct Pool { owned: usize, borrowed: usize, pointers: bool, no_send: marker::PhantomData>, } impl Pool { #[inline] pub unsafe fn new() -> Pool { let p: &'static mut Pointers = mem::transmute(POINTERS); Pool {owned: p.owned.len(), borrowed: p.borrowed.len(), pointers: true, no_send: marker::PhantomData} } #[inline] pub unsafe fn new_no_pointers() -> Pool { let p: &'static mut Pointers = mem::transmute(POINTERS); Pool {owned: p.owned.len(), borrowed: p.borrowed.len(), pointers: false, no_send: marker::PhantomData} } } impl Drop for Pool { fn drop(&mut self) { unsafe { let pool: &'static mut Pointers = mem::transmute(POINTERS); pool.drain(self.owned, self.borrowed, self.pointers); } } } pub unsafe fn register_pointer(obj: *mut ffi::PyObject) { let pool: &'static mut Pointers = mem::transmute(POINTERS); let v = pool.p.lock(); let pool: &'static mut Vec<*mut ffi::PyObject> = mem::transmute(*v); pool.push(obj); } pub unsafe fn register_owned<'p>(_py: Python<'p>, obj: *mut ffi::PyObject) -> &'p PyObjectRef { let pool: &'static mut Pointers = mem::transmute(POINTERS); pool.owned.push(obj); mem::transmute(&pool.owned[pool.owned.len()-1]) } pub unsafe fn register_borrowed<'p>(_py: Python<'p>, obj: *mut ffi::PyObject) -> &'p PyObjectRef { let pool: &'static mut Pointers = mem::transmute(POINTERS); pool.borrowed.push(obj); mem::transmute(&pool.borrowed[pool.borrowed.len()-1]) } impl GILGuard { /// Acquires the global interpreter lock, which allows access to the Python runtime. /// /// If the Python runtime is not already initialized, this function will initialize it. /// See [prepare_freethreaded_python()](fn.prepare_freethreaded_python.html) for details. pub fn acquire() -> GILGuard { prepare_freethreaded_python(); unsafe { let gstate = ffi::PyGILState_Ensure(); // acquire GIL let pool: &'static mut Pointers = mem::transmute(POINTERS); GILGuard { owned: pool.owned.len(), borrowed: pool.borrowed.len(), gstate: gstate, no_send: marker::PhantomData } } } /// Retrieves the marker type that proves that the GIL was acquired. #[inline] pub fn python<'p>(&'p self) -> Python<'p> { unsafe { Python::assume_gil_acquired() } } } #[cfg(test)] mod test { use std; use {ffi, pythonrun}; use python::Python; use object::PyObject; use super::{Pool, Pointers, POINTERS}; #[test] fn test_owned() { pythonrun::prepare_pyo3_library(); unsafe { let p: &'static mut Pointers = std::mem::transmute(POINTERS); let cnt; let empty; { let gil = Python::acquire_gil(); let py = gil.python(); empty = ffi::PyTuple_New(0); cnt = ffi::Py_REFCNT(empty) - 1; let _ = pythonrun::register_owned(py, empty); assert_eq!(p.owned.len(), 1); } { let _gil = Python::acquire_gil(); assert_eq!(p.owned.len(), 0); assert_eq!(cnt, ffi::Py_REFCNT(empty)); } } } #[test] fn test_owned_nested() { pythonrun::prepare_pyo3_library(); unsafe { let p: &'static mut Pointers = std::mem::transmute(POINTERS); let cnt; let empty; { let gil = Python::acquire_gil(); let py = gil.python(); assert_eq!(p.owned.len(), 0); // empty tuple is singleton empty = ffi::PyTuple_New(0); cnt = ffi::Py_REFCNT(empty) - 1; let _ = pythonrun::register_owned(py, empty); assert_eq!(p.owned.len(), 1); { let _pool = Pool::new(); let empty = ffi::PyTuple_New(0); let _ = pythonrun::register_owned(py, empty); assert_eq!(p.owned.len(), 2); } assert_eq!(p.owned.len(), 1); } { let _gil = Python::acquire_gil(); assert_eq!(p.owned.len(), 0); assert_eq!(cnt, ffi::Py_REFCNT(empty)); } } } #[test] fn test_borrowed() { pythonrun::prepare_pyo3_library(); unsafe { let p: &'static mut Pointers = std::mem::transmute(POINTERS); let cnt; { let gil = Python::acquire_gil(); let py = gil.python(); assert_eq!(p.borrowed.len(), 0); cnt = ffi::Py_REFCNT(ffi::Py_True()); pythonrun::register_borrowed(py, ffi::Py_True()); assert_eq!(p.borrowed.len(), 1); assert_eq!(ffi::Py_REFCNT(ffi::Py_True()), cnt); } { let _gil = Python::acquire_gil(); assert_eq!(p.borrowed.len(), 0); assert_eq!(ffi::Py_REFCNT(ffi::Py_True()), cnt); } } } #[test] fn test_borrowed_nested() { pythonrun::prepare_pyo3_library(); unsafe { let p: &'static mut Pointers = std::mem::transmute(POINTERS); let cnt; { let gil = Python::acquire_gil(); let py = gil.python(); assert_eq!(p.borrowed.len(), 0); cnt = ffi::Py_REFCNT(ffi::Py_True()); pythonrun::register_borrowed(py, ffi::Py_True()); assert_eq!(p.borrowed.len(), 1); assert_eq!(ffi::Py_REFCNT(ffi::Py_True()), cnt); { let _pool = Pool::new(); assert_eq!(p.borrowed.len(), 1); pythonrun::register_borrowed(py, ffi::Py_True()); assert_eq!(p.borrowed.len(), 2); } assert_eq!(p.borrowed.len(), 1); assert_eq!(ffi::Py_REFCNT(ffi::Py_True()), cnt); } { let _gil = Python::acquire_gil(); assert_eq!(p.borrowed.len(), 0); assert_eq!(ffi::Py_REFCNT(ffi::Py_True()), cnt); } } } #[test] fn test_pyobject_drop() { pythonrun::prepare_pyo3_library(); unsafe { let p: &'static mut Pointers = std::mem::transmute(POINTERS); let ob; let cnt; let empty; { let gil = Python::acquire_gil(); let py = gil.python(); assert_eq!(p.owned.len(), 0); // empty tuple is singleton empty = ffi::PyTuple_New(0); cnt = ffi::Py_REFCNT(empty); ob = PyObject::from_owned_ptr(py, empty); } drop(ob); assert_eq!(cnt, ffi::Py_REFCNT(empty)); { let _gil = Python::acquire_gil(); } assert_eq!(cnt - 1, ffi::Py_REFCNT(empty)); } } }