#![cfg(feature = "macros")] #[cfg(not(Py_LIMITED_API))] use pyo3::buffer::PyBuffer; use pyo3::prelude::*; use pyo3::types::{self, PyCFunction}; #[cfg(not(Py_LIMITED_API))] use pyo3::types::{PyDateTime, PyFunction}; mod common; #[pyfunction(arg = "true")] fn optional_bool(arg: Option) -> String { format!("{:?}", arg) } #[test] fn test_optional_bool() { // Regression test for issue #932 let gil = Python::acquire_gil(); let py = gil.python(); let f = wrap_pyfunction!(optional_bool)(py).unwrap(); py_assert!(py, f, "f() == 'Some(true)'"); py_assert!(py, f, "f(True) == 'Some(true)'"); py_assert!(py, f, "f(False) == 'Some(false)'"); py_assert!(py, f, "f(None) == 'None'"); } #[cfg(not(Py_LIMITED_API))] #[pyfunction] fn buffer_inplace_add(py: Python, x: PyBuffer, y: PyBuffer) { let x = x.as_mut_slice(py).unwrap(); let y = y.as_slice(py).unwrap(); for (xi, yi) in x.iter().zip(y) { let xi_plus_yi = xi.get() + yi.get(); xi.set(xi_plus_yi); } } #[cfg(not(Py_LIMITED_API))] #[test] fn test_buffer_add() { let gil = Python::acquire_gil(); let py = gil.python(); let f = wrap_pyfunction!(buffer_inplace_add)(py).unwrap(); py_expect_exception!( py, f, r#" import array a = array.array("i", [0, 1, 2, 3]) b = array.array("I", [0, 1, 2, 3]) f(a, b) "#, PyBufferError ); pyo3::py_run!( py, f, r#" import array a = array.array("i", [0, 1, 2, 3]) b = array.array("i", [2, 3, 4, 5]) f(a, b) assert a, array.array("i", [2, 4, 6, 8]) "# ); } #[cfg(not(Py_LIMITED_API))] #[pyfunction] fn function_with_pyfunction_arg(fun: &PyFunction) -> PyResult<&PyAny> { fun.call((), None) } #[pyfunction] fn function_with_pycfunction_arg(fun: &PyCFunction) -> PyResult<&PyAny> { fun.call((), None) } #[test] fn test_functions_with_function_args() { let gil = Python::acquire_gil(); let py = gil.python(); let py_cfunc_arg = wrap_pyfunction!(function_with_pycfunction_arg)(py).unwrap(); let bool_to_string = wrap_pyfunction!(optional_bool)(py).unwrap(); pyo3::py_run!( py, py_cfunc_arg bool_to_string, r#" assert py_cfunc_arg(bool_to_string) == "Some(true)" "# ); #[cfg(not(Py_LIMITED_API))] { let py_func_arg = wrap_pyfunction!(function_with_pyfunction_arg)(py).unwrap(); pyo3::py_run!( py, py_func_arg, r#" def foo(): return "bar" assert py_func_arg(foo) == "bar" "# ); } } #[cfg(not(Py_LIMITED_API))] fn datetime_to_timestamp(dt: &PyAny) -> PyResult { let dt: &PyDateTime = dt.extract()?; let ts: f64 = dt.call_method0("timestamp")?.extract()?; Ok(ts as i64) } #[cfg(not(Py_LIMITED_API))] #[pyfunction] fn function_with_custom_conversion( #[pyo3(from_py_with = "datetime_to_timestamp")] timestamp: i64, ) -> i64 { timestamp } #[cfg(not(Py_LIMITED_API))] #[test] fn test_function_with_custom_conversion() { let gil = Python::acquire_gil(); let py = gil.python(); let custom_conv_func = wrap_pyfunction!(function_with_custom_conversion)(py).unwrap(); pyo3::py_run!( py, custom_conv_func, r#" import datetime dt = datetime.datetime.fromtimestamp(1612040400) assert custom_conv_func(dt) == 1612040400 "# ) } #[cfg(not(Py_LIMITED_API))] #[test] fn test_function_with_custom_conversion_error() { let gil = Python::acquire_gil(); let py = gil.python(); let custom_conv_func = wrap_pyfunction!(function_with_custom_conversion)(py).unwrap(); py_expect_exception!( py, custom_conv_func, "custom_conv_func(['a'])", PyTypeError, "argument 'timestamp': 'list' object cannot be converted to 'PyDateTime'" ); } #[derive(Debug, FromPyObject)] struct ValueClass { value: usize, } #[pyfunction] fn conversion_error(str_arg: &str, int_arg: i64, tuple_arg: (&str, f64), option_arg: Option, struct_arg: Option ) { println!( "{:?} {:?} {:?} {:?} {:?}", str_arg, int_arg, tuple_arg, option_arg, struct_arg ); } #[test] fn test_conversion_error() { let gil = Python::acquire_gil(); let py = gil.python(); let conversion_error = wrap_pyfunction!(conversion_error)(py).unwrap(); py_expect_exception!( py, conversion_error, "conversion_error(None, None, None, None, None)", PyTypeError, "argument 'str_arg': 'NoneType' object cannot be converted to 'PyString'" ); py_expect_exception!( py, conversion_error, "conversion_error(100, None, None, None, None)", PyTypeError, "argument 'str_arg': 'int' object cannot be converted to 'PyString'" ); py_expect_exception!( py, conversion_error, "conversion_error('string1', 'string2', None, None, None)", PyTypeError, "argument 'int_arg': 'str' object cannot be interpreted as an integer" ); py_expect_exception!( py, conversion_error, "conversion_error('string1', -100, 'string2', None, None)", PyTypeError, "argument 'tuple_arg': 'str' object cannot be converted to 'PyTuple'" ); py_expect_exception!( py, conversion_error, "conversion_error('string1', -100, ('string2', 10.), 'string3', None)", PyTypeError, "argument 'option_arg': 'str' object cannot be interpreted as an integer" ); py_expect_exception!( py, conversion_error, " class ValueClass: def __init__(self, value): self.value = value conversion_error('string1', -100, ('string2', 10.), None, ValueClass(\"no_expected_type\"))", PyTypeError, "argument 'struct_arg': failed to extract field ValueClass.value:\n\tTypeError: 'str' \ object cannot be interpreted as an integer" ); py_expect_exception!( py, conversion_error, " class ValueClass: def __init__(self, value): self.value = value conversion_error('string1', -100, ('string2', 10.), None, ValueClass(-5))", PyTypeError, "argument 'struct_arg': failed to extract field ValueClass.value:\n\tOverflowError: can't \ convert negative int to unsigned" ); } #[test] fn test_closure() { let gil = Python::acquire_gil(); let py = gil.python(); let f = |args: &types::PyTuple, _kwargs: Option<&types::PyDict>| -> PyResult<_> { let gil = Python::acquire_gil(); let py = gil.python(); let res: Vec<_> = args .iter() .map(|elem| { if let Ok(i) = elem.extract::() { (i + 1).into_py(py) } else if let Ok(f) = elem.extract::() { (2. * f).into_py(py) } else if let Ok(mut s) = elem.extract::() { s.push_str("-py"); s.into_py(py) } else { panic!("unexpected argument type for {:?}", elem) } }) .collect(); Ok(res) }; let closure_py = PyCFunction::new_closure(f, py).unwrap(); py_assert!(py, closure_py, "closure_py(42) == [43]"); py_assert!( py, closure_py, "closure_py(42, 3.14, 'foo') == [43, 6.28, 'foo-py']" ); } #[test] fn test_closure_counter() { let gil = Python::acquire_gil(); let py = gil.python(); let counter = std::cell::RefCell::new(0); let counter_fn = move |_args: &types::PyTuple, _kwargs: Option<&types::PyDict>| -> PyResult { let mut counter = counter.borrow_mut(); *counter += 1; Ok(*counter) }; let counter_py = PyCFunction::new_closure(counter_fn, py).unwrap(); py_assert!(py, counter_py, "counter_py() == 1"); py_assert!(py, counter_py, "counter_py() == 2"); py_assert!(py, counter_py, "counter_py() == 3"); } #[test] fn use_pyfunction() { mod function_in_module { use pyo3::prelude::*; #[pyfunction] pub fn foo(x: i32) -> i32 { x } } Python::with_gil(|py| { use function_in_module::foo; // check imported name can be wrapped let f = wrap_pyfunction!(foo, py).unwrap(); assert_eq!(f.call1((5,)).unwrap().extract::().unwrap(), 5); assert_eq!(f.call1((42,)).unwrap().extract::().unwrap(), 42); // check path import can be wrapped let f2 = wrap_pyfunction!(function_in_module::foo, py).unwrap(); assert_eq!(f2.call1((5,)).unwrap().extract::().unwrap(), 5); assert_eq!(f2.call1((42,)).unwrap().extract::().unwrap(), 42); }) } #[test] fn required_argument_after_option() { #[pyfunction] pub fn foo(x: Option, y: i32) -> i32 { y + x.unwrap_or_default() } Python::with_gil(|py| { let f = wrap_pyfunction!(foo, py).unwrap(); // it is an error to call this function with no arguments py_expect_exception!( py, f, "f()", PyTypeError, "foo() missing 2 required positional arguments: 'x' and 'y'" ); // it is an error to call this function with one argument py_expect_exception!( py, f, "f(None)", PyTypeError, "foo() missing 1 required positional argument: 'y'" ); // ok to call with two arguments py_assert!(py, f, "f(None, 5) == 5"); // ok to call with keyword arguments py_assert!(py, f, "f(x=None, y=5) == 5"); }) }