Chrono: compatibility with abi3

This commit is contained in:
Tpt 2023-12-19 10:13:31 +01:00
parent 1dca87972a
commit d7eac6527b
2 changed files with 277 additions and 95 deletions

View file

@ -0,0 +1 @@
`chrono` conversions are compatible with `abi3`

View file

@ -1,10 +1,8 @@
#![cfg(all(feature = "chrono", not(Py_LIMITED_API)))]
#![cfg(feature = "chrono")]
//! Conversions to and from [chrono](https://docs.rs/chrono/)s `Duration`,
//! `NaiveDate`, `NaiveTime`, `DateTime<Tz>`, `FixedOffset`, and `Utc`.
//!
//! Unavailable with the `abi3` feature.
//!
//! # Setup
//!
//! To use this feature, add this to your **`Cargo.toml`**:
@ -23,35 +21,43 @@
//! # Example: Convert a `PyDateTime` to chrono's `DateTime<Utc>`
//!
//! ```rust
//! use chrono::{Utc, DateTime};
//! use pyo3::{Python, ToPyObject, types::PyDateTime};
//! use chrono::{DateTime, Duration, TimeZone, Utc};
//! use pyo3::{Python, ToPyObject};
//!
//! fn main() {
//! pyo3::prepare_freethreaded_python();
//! Python::with_gil(|py| {
//! // Create an UTC datetime in python
//! let py_tz = Utc.to_object(py);
//! let py_tz = py_tz.downcast(py).unwrap();
//! let py_datetime = PyDateTime::new(py, 2022, 1, 1, 12, 0, 0, 0, Some(py_tz)).unwrap();
//! println!("PyDateTime: {}", py_datetime);
//! // Now convert it to chrono's DateTime<Utc>
//! let chrono_datetime: DateTime<Utc> = py_datetime.extract().unwrap();
//! // Build some chrono values
//! let chrono_datetime = Utc.with_ymd_and_hms(2022, 1, 1, 12, 0, 0).unwrap();
//! let chrono_duration = Duration::seconds(1);
//! // Convert them to Python
//! let py_datetime = chrono_datetime.to_object(py);
//! let py_timedelta = chrono_duration.to_object(py);
//! // Do an operation in Python
//! let py_sum = py_datetime.call_method1(py, "__add__", (py_timedelta,)).unwrap();
//! // Convert back to Rust
//! let chrono_sum: DateTime<Utc> = py_sum.extract(py).unwrap();
//! println!("DateTime<Utc>: {}", chrono_datetime);
//! });
//! }
//! ```
use crate::exceptions::{PyTypeError, PyUserWarning, PyValueError};
#[cfg(Py_LIMITED_API)]
use crate::sync::GILOnceCell;
#[cfg(not(Py_LIMITED_API))]
use crate::types::datetime::timezone_from_offset;
#[cfg(not(Py_LIMITED_API))]
use crate::types::{
timezone_utc, PyDate, PyDateAccess, PyDateTime, PyDelta, PyDeltaAccess, PyTime, PyTimeAccess,
PyTzInfo, PyTzInfoAccess,
};
#[cfg(Py_LIMITED_API)]
use crate::{intern, PyDowncastError};
use crate::{FromPyObject, IntoPy, PyAny, PyErr, PyObject, PyResult, Python, ToPyObject};
use chrono::offset::{FixedOffset, Utc};
use chrono::{
DateTime, Datelike, Duration, NaiveDate, NaiveDateTime, NaiveTime, Offset, TimeZone, Timelike,
};
use std::convert::TryInto;
impl ToPyObject for Duration {
fn to_object(&self, py: Python<'_>) -> PyObject {
@ -59,78 +65,121 @@ impl ToPyObject for Duration {
let days = self.num_days();
// Remainder of seconds
let secs_dur = *self - Duration::days(days);
// .try_into() converts i64 to i32, but this should never overflow
// since it's at most the number of seconds per day
let secs = secs_dur.num_seconds().try_into().unwrap();
let secs = secs_dur.num_seconds();
// Fractional part of the microseconds
let micros = (secs_dur - Duration::seconds(secs_dur.num_seconds()))
.num_microseconds()
// This should never panic since we are just getting the fractional
// part of the total microseconds, which should never overflow.
.unwrap()
// Same for the conversion from i64 to i32
.try_into()
.unwrap();
// We do not need to check i64 to i32 cast from rust because
// python will panic with OverflowError.
// We pass true as the `normalize` parameter since we'd need to do several checks here to
// avoid that, and it shouldn't have a big performance impact.
let delta = PyDelta::new(py, days.try_into().unwrap_or(i32::MAX), secs, micros, true)
.expect("failed to construct delta");
delta.into()
#[cfg(not(Py_LIMITED_API))]
{
// We do not need to check the days i64 to i32 cast from rust because
// python will panic with OverflowError.
// We pass true as the `normalize` parameter since we'd need to do several checks here to
// avoid that, and it shouldn't have a big performance impact.
// The seconds and microseconds cast should never overflow since it's at most the number of seconds per day
PyDelta::new(
py,
days.try_into().unwrap_or(i32::MAX),
secs.try_into().unwrap(),
micros.try_into().unwrap(),
true,
)
.expect("failed to construct delta")
.into()
}
#[cfg(Py_LIMITED_API)]
{
DatetimeTypes::get(py)
.timedelta
.call1(py, (days, secs, micros))
.expect("failed to construct datetime.timedelta")
}
}
}
impl IntoPy<PyObject> for Duration {
fn into_py(self, py: Python<'_>) -> PyObject {
ToPyObject::to_object(&self, py)
self.to_object(py)
}
}
impl FromPyObject<'_> for Duration {
fn extract(ob: &PyAny) -> PyResult<Duration> {
let delta: &PyDelta = ob.downcast()?;
// Python size are much lower than rust size so we do not need bound checks.
// 0 <= microseconds < 1000000
// 0 <= seconds < 3600*24
// -999999999 <= days <= 999999999
Ok(Duration::days(delta.get_days().into())
+ Duration::seconds(delta.get_seconds().into())
+ Duration::microseconds(delta.get_microseconds().into()))
#[cfg(not(Py_LIMITED_API))]
let (days, seconds, microseconds) = {
let delta: &PyDelta = ob.downcast()?;
(
delta.get_days().into(),
delta.get_seconds().into(),
delta.get_microseconds().into(),
)
};
#[cfg(Py_LIMITED_API)]
let (days, seconds, microseconds) = {
check_type(ob, &DatetimeTypes::get(ob.py()).timedelta, "PyDelta")?;
(
ob.getattr(intern!(ob.py(), "days"))?.extract()?,
ob.getattr(intern!(ob.py(), "seconds"))?.extract()?,
ob.getattr(intern!(ob.py(), "microseconds"))?.extract()?,
)
};
Ok(
Duration::days(days)
+ Duration::seconds(seconds)
+ Duration::microseconds(microseconds),
)
}
}
impl ToPyObject for NaiveDate {
fn to_object(&self, py: Python<'_>) -> PyObject {
(*self).into_py(py)
let DateArgs { year, month, day } = self.into();
#[cfg(not(Py_LIMITED_API))]
{
PyDate::new(py, year, month, day)
.expect("failed to construct date")
.into()
}
#[cfg(Py_LIMITED_API)]
{
DatetimeTypes::get(py)
.date
.call1(py, (year, month, day))
.expect("failed to construct datetime.date")
}
}
}
impl IntoPy<PyObject> for NaiveDate {
fn into_py(self, py: Python<'_>) -> PyObject {
let DateArgs { year, month, day } = self.into();
PyDate::new(py, year, month, day)
.expect("failed to construct date")
.into()
self.to_object(py)
}
}
impl FromPyObject<'_> for NaiveDate {
fn extract(ob: &PyAny) -> PyResult<NaiveDate> {
let date: &PyDate = ob.downcast()?;
py_date_to_naive_date(date)
#[cfg(not(Py_LIMITED_API))]
{
let date: &PyDate = ob.downcast()?;
py_date_to_naive_date(date)
}
#[cfg(Py_LIMITED_API)]
{
check_type(ob, &DatetimeTypes::get(ob.py()).date, "PyDate")?;
py_date_to_naive_date(ob)
}
}
}
impl ToPyObject for NaiveTime {
fn to_object(&self, py: Python<'_>) -> PyObject {
(*self).into_py(py)
}
}
impl IntoPy<PyObject> for NaiveTime {
fn into_py(self, py: Python<'_>) -> PyObject {
let TimeArgs {
hour,
min,
@ -138,7 +187,14 @@ impl IntoPy<PyObject> for NaiveTime {
micro,
truncated_leap_second,
} = self.into();
#[cfg(not(Py_LIMITED_API))]
let time = PyTime::new(py, hour, min, sec, micro, None).expect("Failed to construct time");
#[cfg(Py_LIMITED_API)]
let time = DatetimeTypes::get(py)
.time
.as_ref(py)
.call1((hour, min, sec, micro))
.expect("failed to construct datetime.time");
if truncated_leap_second {
warn_truncated_leap_second(time);
}
@ -146,34 +202,54 @@ impl IntoPy<PyObject> for NaiveTime {
}
}
impl IntoPy<PyObject> for NaiveTime {
fn into_py(self, py: Python<'_>) -> PyObject {
self.to_object(py)
}
}
impl FromPyObject<'_> for NaiveTime {
fn extract(ob: &PyAny) -> PyResult<NaiveTime> {
let time: &PyTime = ob.downcast()?;
py_time_to_naive_time(time)
#[cfg(not(Py_LIMITED_API))]
{
let time: &PyTime = ob.downcast()?;
py_time_to_naive_time(time)
}
#[cfg(Py_LIMITED_API)]
{
check_type(ob, &DatetimeTypes::get(ob.py()).time, "PyTime")?;
py_time_to_naive_time(ob)
}
}
}
impl ToPyObject for NaiveDateTime {
fn to_object(&self, py: Python<'_>) -> PyObject {
naive_datetime_to_py_datetime(py, self, None)
.expect("failed to construct datetime")
.into()
}
}
impl IntoPy<PyObject> for NaiveDateTime {
fn into_py(self, py: Python<'_>) -> PyObject {
ToPyObject::to_object(&self, py)
self.to_object(py)
}
}
impl FromPyObject<'_> for NaiveDateTime {
fn extract(ob: &PyAny) -> PyResult<NaiveDateTime> {
let dt: &PyDateTime = ob.downcast()?;
fn extract(dt: &PyAny) -> PyResult<NaiveDateTime> {
#[cfg(not(Py_LIMITED_API))]
let dt: &PyDateTime = dt.downcast()?;
#[cfg(Py_LIMITED_API)]
check_type(dt, &DatetimeTypes::get(dt.py()).datetime, "PyDateTime")?;
// If the user tries to convert a timezone aware datetime into a naive one,
// we return a hard error. We could silently remove tzinfo, or assume local timezone
// and do a conversion, but better leave this decision to the user of the library.
if dt.get_tzinfo().is_some() {
#[cfg(not(Py_LIMITED_API))]
let has_tzinfo = dt.get_tzinfo().is_some();
#[cfg(Py_LIMITED_API)]
let has_tzinfo = !dt.getattr(intern!(dt.py(), "tzinfo"))?.is_none();
if has_tzinfo {
return Err(PyTypeError::new_err("expected a datetime without tzinfo"));
}
@ -189,32 +265,39 @@ impl<Tz: TimeZone> ToPyObject for DateTime<Tz> {
let tz = self.offset().fix().to_object(py);
let tz = tz.downcast(py).unwrap();
naive_datetime_to_py_datetime(py, &self.naive_local(), Some(tz))
.expect("failed to construct datetime")
.into()
}
}
impl<Tz: TimeZone> IntoPy<PyObject> for DateTime<Tz> {
fn into_py(self, py: Python<'_>) -> PyObject {
ToPyObject::to_object(&self, py)
self.to_object(py)
}
}
impl<Tz: TimeZone + for<'a> FromPyObject<'a>> FromPyObject<'_> for DateTime<Tz> {
fn extract(ob: &PyAny) -> PyResult<DateTime<Tz>> {
let dt: &PyDateTime = ob.downcast()?;
let tz = if let Some(tzinfo) = dt.get_tzinfo() {
fn extract(dt: &PyAny) -> PyResult<DateTime<Tz>> {
#[cfg(not(Py_LIMITED_API))]
let dt: &PyDateTime = dt.downcast()?;
#[cfg(Py_LIMITED_API)]
check_type(dt, &DatetimeTypes::get(dt.py()).datetime, "PyDateTime")?;
#[cfg(not(Py_LIMITED_API))]
let tzinfo = dt.get_tzinfo();
#[cfg(Py_LIMITED_API)]
let tzinfo: Option<&PyAny> = dt.getattr(intern!(dt.py(), "tzinfo"))?.extract()?;
let tz = if let Some(tzinfo) = tzinfo {
tzinfo.extract()?
} else {
return Err(PyTypeError::new_err(
"expected a datetime with non-None tzinfo",
));
};
let dt = NaiveDateTime::new(py_date_to_naive_date(dt)?, py_time_to_naive_time(dt)?);
dt.and_local_timezone(tz).single().ok_or_else(|| {
let naive_dt = NaiveDateTime::new(py_date_to_naive_date(dt)?, py_time_to_naive_time(dt)?);
naive_dt.and_local_timezone(tz).single().ok_or_else(|| {
PyValueError::new_err(format!(
"The datetime {:?} contains an incompatible or ambiguous timezone",
ob
dt
))
})
}
@ -223,17 +306,29 @@ impl<Tz: TimeZone + for<'a> FromPyObject<'a>> FromPyObject<'_> for DateTime<Tz>
impl ToPyObject for FixedOffset {
fn to_object(&self, py: Python<'_>) -> PyObject {
let seconds_offset = self.local_minus_utc();
let td =
PyDelta::new(py, 0, seconds_offset, 0, true).expect("failed to construct timedelta");
timezone_from_offset(py, td)
.expect("Failed to construct PyTimezone")
.into()
#[cfg(not(Py_LIMITED_API))]
{
let td = PyDelta::new(py, 0, seconds_offset, 0, true)
.expect("failed to construct timedelta");
timezone_from_offset(py, td)
.expect("Failed to construct PyTimezone")
.into()
}
#[cfg(Py_LIMITED_API)]
{
let td = Duration::seconds(seconds_offset.into()).into_py(py);
DatetimeTypes::get(py)
.timezone
.call1(py, (td,))
.expect("failed to construct datetime.timezone")
}
}
}
impl IntoPy<PyObject> for FixedOffset {
fn into_py(self, py: Python<'_>) -> PyObject {
ToPyObject::to_object(&self, py)
self.to_object(py)
}
}
@ -243,21 +338,24 @@ impl FromPyObject<'_> for FixedOffset {
/// Note that the conversion will result in precision lost in microseconds as chrono offset
/// does not supports microseconds.
fn extract(ob: &PyAny) -> PyResult<FixedOffset> {
let py_tzinfo: &PyTzInfo = ob.downcast()?;
// Passing `ob.py().None()` (so Python's None) to the `utcoffset` function will only
#[cfg(not(Py_LIMITED_API))]
let ob: &PyTzInfo = ob.extract()?;
#[cfg(Py_LIMITED_API)]
check_type(ob, &DatetimeTypes::get(ob.py()).tzinfo, "PyTzInfo")?;
// Passing `()` (so Python's None) to the `utcoffset` function will only
// work for timezones defined as fixed offsets in Python.
// Any other timezone would require a datetime as the parameter, and return
// None if the datetime is not provided.
// Trying to convert None to a PyDelta in the next line will then fail.
let py_timedelta = py_tzinfo.call_method1("utcoffset", (ob.py().None(),))?;
let py_timedelta: &PyDelta = py_timedelta.downcast().map_err(|_| {
PyTypeError::new_err(format!("{:?} is not a fixed offset timezone", py_tzinfo))
})?;
let days = py_timedelta.get_days() as i64;
let seconds = py_timedelta.get_seconds() as i64;
// Here we won't get microseconds as noted before
// let microseconds = py_timedelta.get_microseconds() as i64;
let total_seconds = Duration::days(days) + Duration::seconds(seconds);
let py_timedelta = ob.call_method1("utcoffset", ((),))?;
if py_timedelta.is_none() {
return Err(PyTypeError::new_err(format!(
"{:?} is not a fixed offset timezone",
ob
)));
}
let total_seconds: Duration = py_timedelta.extract()?;
// This cast is safe since the timedelta is limited to -24 hours and 24 hours.
let total_seconds = total_seconds.num_seconds() as i32;
FixedOffset::east_opt(total_seconds)
@ -267,21 +365,20 @@ impl FromPyObject<'_> for FixedOffset {
impl ToPyObject for Utc {
fn to_object(&self, py: Python<'_>) -> PyObject {
timezone_utc(py).to_object(py)
timezone_utc(py).into()
}
}
impl IntoPy<PyObject> for Utc {
fn into_py(self, py: Python<'_>) -> PyObject {
ToPyObject::to_object(&self, py)
self.to_object(py)
}
}
impl FromPyObject<'_> for Utc {
fn extract(ob: &PyAny) -> PyResult<Utc> {
let py_tzinfo: &PyTzInfo = ob.downcast()?;
let py_utc = timezone_utc(ob.py());
if py_tzinfo.eq(py_utc)? {
if ob.eq(py_utc)? {
Ok(Utc)
} else {
Err(PyValueError::new_err("expected datetime.timezone.utc"))
@ -295,8 +392,8 @@ struct DateArgs {
day: u8,
}
impl From<NaiveDate> for DateArgs {
fn from(value: NaiveDate) -> Self {
impl From<&NaiveDate> for DateArgs {
fn from(value: &NaiveDate) -> Self {
Self {
year: value.year(),
month: value.month() as u8,
@ -313,8 +410,8 @@ struct TimeArgs {
truncated_leap_second: bool,
}
impl From<NaiveTime> for TimeArgs {
fn from(value: NaiveTime) -> Self {
impl From<&NaiveTime> for TimeArgs {
fn from(value: &NaiveTime) -> Self {
let ns = value.nanosecond();
let checked_sub = ns.checked_sub(1_000_000_000);
let truncated_leap_second = checked_sub.is_some();
@ -329,24 +426,33 @@ impl From<NaiveTime> for TimeArgs {
}
}
fn naive_datetime_to_py_datetime<'py>(
py: Python<'py>,
fn naive_datetime_to_py_datetime(
py: Python<'_>,
naive_datetime: &NaiveDateTime,
tzinfo: Option<&PyTzInfo>,
) -> PyResult<&'py PyDateTime> {
let DateArgs { year, month, day } = naive_datetime.date().into();
#[cfg(not(Py_LIMITED_API))] tzinfo: Option<&PyTzInfo>,
#[cfg(Py_LIMITED_API)] tzinfo: Option<&PyAny>,
) -> PyObject {
let DateArgs { year, month, day } = (&naive_datetime.date()).into();
let TimeArgs {
hour,
min,
sec,
micro,
truncated_leap_second,
} = naive_datetime.time().into();
let datetime = PyDateTime::new(py, year, month, day, hour, min, sec, micro, tzinfo)?;
} = (&naive_datetime.time()).into();
#[cfg(not(Py_LIMITED_API))]
let datetime = PyDateTime::new(py, year, month, day, hour, min, sec, micro, tzinfo)
.expect("failed to construct datetime");
#[cfg(Py_LIMITED_API)]
let datetime = DatetimeTypes::get(py)
.datetime
.as_ref(py)
.call1((year, month, day, hour, min, sec, micro, tzinfo))
.expect("failed to construct datetime.datetime");
if truncated_leap_second {
warn_truncated_leap_second(datetime);
}
Ok(datetime)
datetime.into()
}
fn warn_truncated_leap_second(obj: &PyAny) {
@ -361,6 +467,7 @@ fn warn_truncated_leap_second(obj: &PyAny) {
};
}
#[cfg(not(Py_LIMITED_API))]
fn py_date_to_naive_date(py_date: &impl PyDateAccess) -> PyResult<NaiveDate> {
NaiveDate::from_ymd_opt(
py_date.get_year(),
@ -370,6 +477,17 @@ fn py_date_to_naive_date(py_date: &impl PyDateAccess) -> PyResult<NaiveDate> {
.ok_or_else(|| PyValueError::new_err("invalid or out-of-range date"))
}
#[cfg(Py_LIMITED_API)]
fn py_date_to_naive_date(py_date: &PyAny) -> PyResult<NaiveDate> {
NaiveDate::from_ymd_opt(
py_date.getattr(intern!(py_date.py(), "year"))?.extract()?,
py_date.getattr(intern!(py_date.py(), "month"))?.extract()?,
py_date.getattr(intern!(py_date.py(), "day"))?.extract()?,
)
.ok_or_else(|| PyValueError::new_err("invalid or out-of-range date"))
}
#[cfg(not(Py_LIMITED_API))]
fn py_time_to_naive_time(py_time: &impl PyTimeAccess) -> PyResult<NaiveTime> {
NaiveTime::from_hms_micro_opt(
py_time.get_hour().into(),
@ -380,6 +498,69 @@ fn py_time_to_naive_time(py_time: &impl PyTimeAccess) -> PyResult<NaiveTime> {
.ok_or_else(|| PyValueError::new_err("invalid or out-of-range time"))
}
#[cfg(Py_LIMITED_API)]
fn py_time_to_naive_time(py_time: &PyAny) -> PyResult<NaiveTime> {
NaiveTime::from_hms_micro_opt(
py_time.getattr(intern!(py_time.py(), "hour"))?.extract()?,
py_time
.getattr(intern!(py_time.py(), "minute"))?
.extract()?,
py_time
.getattr(intern!(py_time.py(), "second"))?
.extract()?,
py_time
.getattr(intern!(py_time.py(), "microsecond"))?
.extract()?,
)
.ok_or_else(|| PyValueError::new_err("invalid or out-of-range time"))
}
#[cfg(Py_LIMITED_API)]
fn check_type(value: &PyAny, t: &PyObject, type_name: &'static str) -> PyResult<()> {
if !value.is_instance(t.as_ref(value.py()))? {
return Err(PyDowncastError::new(value, type_name).into());
}
Ok(())
}
#[cfg(Py_LIMITED_API)]
struct DatetimeTypes {
date: PyObject,
datetime: PyObject,
time: PyObject,
timedelta: PyObject,
timezone: PyObject,
timezone_utc: PyObject,
tzinfo: PyObject,
}
#[cfg(Py_LIMITED_API)]
impl DatetimeTypes {
fn get(py: Python<'_>) -> &Self {
static TYPES: GILOnceCell<DatetimeTypes> = GILOnceCell::new();
TYPES
.get_or_try_init(py, || {
let datetime = py.import("datetime")?;
let timezone = datetime.getattr("timezone")?;
Ok::<_, PyErr>(Self {
date: datetime.getattr("date")?.into(),
datetime: datetime.getattr("datetime")?.into(),
time: datetime.getattr("time")?.into(),
timedelta: datetime.getattr("timedelta")?.into(),
timezone: timezone.into(),
timezone_utc: timezone.getattr("utc")?.into(),
tzinfo: datetime.getattr("tzinfo")?.into(),
})
})
.expect("failed to load datetime module")
}
}
#[cfg(Py_LIMITED_API)]
fn timezone_utc(py: Python<'_>) -> &PyAny {
DatetimeTypes::get(py).timezone_utc.as_ref(py)
}
#[cfg(test)]
mod tests {
use super::*;
@ -463,7 +644,7 @@ mod tests {
);
assert_eq!(
none.extract::<Utc>().unwrap_err().to_string(),
"TypeError: 'NoneType' object cannot be converted to 'PyTzInfo'"
"ValueError: expected datetime.timezone.utc"
);
assert_eq!(
none.extract::<NaiveTime>().unwrap_err().to_string(),