Merge pull request #3706 from davidhewitt/frompyobject2

Add `extract_bound` method to FromPyObject
This commit is contained in:
David Hewitt 2024-01-28 07:48:03 +00:00 committed by GitHub
commit c54d8976db
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 141 additions and 80 deletions

View File

@ -241,12 +241,42 @@ To minimise breakage of code using the GIL-Refs API, the `Bound<T>` smart pointe
For example, the following APIs have gained updated variants: For example, the following APIs have gained updated variants:
- `PyList::new`, `PyTyple::new` and similar constructors have replacements `PyList::new_bound`, `PyTuple::new_bound` etc. - `PyList::new`, `PyTyple::new` and similar constructors have replacements `PyList::new_bound`, `PyTuple::new_bound` etc.
- `FromPyObject::extract` has a new `FromPyObject::extract_bound` (see the section below)
Because the new `Bound<T>` API brings ownership out of the PyO3 framework and into user code, there are a few places where user code is expected to need to adjust while switching to the new API: Because the new `Bound<T>` API brings ownership out of the PyO3 framework and into user code, there are a few places where user code is expected to need to adjust while switching to the new API:
- Code will need to add the occasional `&` to borrow the new smart pointer as `&Bound<T>` to pass these types around (or use `.clone()` at the very small cost of increasing the Python reference count) - Code will need to add the occasional `&` to borrow the new smart pointer as `&Bound<T>` to pass these types around (or use `.clone()` at the very small cost of increasing the Python reference count)
- `Bound<PyList>` and `Bound<PyTuple>` cannot support indexing with `list[0]`, you should use `list.get_item(0)` instead. - `Bound<PyList>` and `Bound<PyTuple>` cannot support indexing with `list[0]`, you should use `list.get_item(0)` instead.
- `Bound<PyTuple>::iter_borrowed` is slightly more efficient than `Bound<PyTuple>::iter`. The default iteration of `Bound<PyTuple>` cannot return borrowed references because Rust does not (yet) have "lending iterators". Similarly `Bound<PyTuple>::get_borrowed_item` is more efficient than `Bound<PyTuple>::get_item` for the same reason. - `Bound<PyTuple>::iter_borrowed` is slightly more efficient than `Bound<PyTuple>::iter`. The default iteration of `Bound<PyTuple>` cannot return borrowed references because Rust does not (yet) have "lending iterators". Similarly `Bound<PyTuple>::get_borrowed_item` is more efficient than `Bound<PyTuple>::get_item` for the same reason.
#### Migrating `FromPyObject` implementations
`FromPyObject` has had a new method `extract_bound` which takes `&Bound<'py, PyAny>` as an argument instead of `&PyAny`. Both `extract` and `extract_bound` have been given default implementations in terms of the other, to avoid breaking code immediately on update to 0.21.
All implementations of `FromPyObject` should be switched from `extract` to `extract_bound`.
Before:
```rust,ignore
impl<'py> FromPyObject<'py> for MyType {
fn extract(obj: &'py PyAny) -> PyResult<Self> {
/* ... */
}
}
```
After:
```rust,ignore
impl<'py> FromPyObject<'py> for MyType {
fn extract_bound(obj: &Bound<'py, PyAny>) -> PyResult<Self> {
/* ... */
}
}
```
The expectation is that in 0.22 `extract_bound` will have the default implementation removed and in 0.23 `extract` will be removed.
## from 0.19.* to 0.20 ## from 0.19.* to 0.20
### Drop support for older technologies ### Drop support for older technologies

View File

@ -0,0 +1 @@
Add `FromPyObject::extract_bound` method, which can be implemented to avoid using the GIL Ref API in `FromPyObject` implementations.

View File

@ -6,7 +6,7 @@ use crate::pyclass::boolean_struct::False;
use crate::type_object::PyTypeInfo; use crate::type_object::PyTypeInfo;
use crate::types::PyTuple; use crate::types::PyTuple;
use crate::{ use crate::{
ffi, gil, Py, PyAny, PyCell, PyClass, PyNativeType, PyObject, PyRef, PyRefMut, Python, ffi, gil, Bound, Py, PyAny, PyCell, PyClass, PyNativeType, PyObject, PyRef, PyRefMut, Python,
}; };
use std::cell::Cell; use std::cell::Cell;
use std::ptr::NonNull; use std::ptr::NonNull;
@ -215,11 +215,26 @@ pub trait IntoPy<T>: Sized {
/// Since which case applies depends on the runtime type of the Python object, /// Since which case applies depends on the runtime type of the Python object,
/// both the `obj` and `prepared` variables must outlive the resulting string slice. /// both the `obj` and `prepared` variables must outlive the resulting string slice.
/// ///
/// The trait's conversion method takes a `&PyAny` argument but is called /// During the migration of PyO3 from the "GIL Refs" API to the `Bound<T>` smart pointer, this trait
/// `FromPyObject` for historical reasons. /// has two methods `extract` and `extract_bound` which are defaulted to call each other. To avoid
/// infinite recursion, implementors must implement at least one of these methods. The recommendation
/// is to implement `extract_bound` and leave `extract` as the default implementation.
pub trait FromPyObject<'source>: Sized { pub trait FromPyObject<'source>: Sized {
/// Extracts `Self` from the source `PyObject`. /// Extracts `Self` from the source GIL Ref `obj`.
fn extract(ob: &'source PyAny) -> PyResult<Self>; ///
/// Implementors are encouraged to implement `extract_bound` and leave this method as the
/// default implementation, which will forward calls to `extract_bound`.
fn extract(ob: &'source PyAny) -> PyResult<Self> {
Self::extract_bound(&ob.as_borrowed())
}
/// Extracts `Self` from the bound smart pointer `obj`.
///
/// Implementors are encouraged to implement this method and leave `extract` defaulted, as
/// this will be most compatible with PyO3's future API.
fn extract_bound(ob: &Bound<'source, PyAny>) -> PyResult<Self> {
Self::extract(ob.clone().into_gil_ref())
}
/// Extracts the type hint information for this type when it appears as an argument. /// Extracts the type hint information for this type when it appears as an argument.
/// ///

View File

@ -93,8 +93,11 @@
//! result = get_eigenvalues(m11,m12,m21,m22) //! result = get_eigenvalues(m11,m12,m21,m22)
//! assert result == [complex(1,-1), complex(-2,0)] //! assert result == [complex(1,-1), complex(-2,0)]
//! ``` //! ```
#[cfg(any(Py_LIMITED_API, PyPy))]
use crate::types::any::PyAnyMethods;
use crate::{ use crate::{
ffi, types::PyComplex, FromPyObject, PyAny, PyErr, PyObject, PyResult, Python, ToPyObject, ffi, types::PyComplex, Bound, FromPyObject, PyAny, PyErr, PyObject, PyResult, Python,
ToPyObject,
}; };
use num_complex::Complex; use num_complex::Complex;
use std::os::raw::c_double; use std::os::raw::c_double;
@ -131,8 +134,8 @@ macro_rules! complex_conversion {
} }
#[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))] #[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
impl<'source> FromPyObject<'source> for Complex<$float> { impl FromPyObject<'_> for Complex<$float> {
fn extract(obj: &'source PyAny) -> PyResult<Complex<$float>> { fn extract_bound(obj: &Bound<'_, PyAny>) -> PyResult<Complex<$float>> {
#[cfg(not(any(Py_LIMITED_API, PyPy)))] #[cfg(not(any(Py_LIMITED_API, PyPy)))]
unsafe { unsafe {
let val = ffi::PyComplex_AsCComplex(obj.as_ptr()); let val = ffi::PyComplex_AsCComplex(obj.as_ptr());
@ -146,12 +149,14 @@ macro_rules! complex_conversion {
#[cfg(any(Py_LIMITED_API, PyPy))] #[cfg(any(Py_LIMITED_API, PyPy))]
unsafe { unsafe {
let complex;
let obj = if obj.is_instance_of::<PyComplex>() { let obj = if obj.is_instance_of::<PyComplex>() {
obj obj
} else if let Some(method) = } else if let Some(method) =
obj.lookup_special(crate::intern!(obj.py(), "__complex__"))? obj.lookup_special(crate::intern!(obj.py(), "__complex__"))?
{ {
method.call0()? complex = method.call0()?;
&complex
} else { } else {
// `obj` might still implement `__float__` or `__index__`, which will be // `obj` might still implement `__float__` or `__index__`, which will be
// handled by `PyComplex_{Real,Imag}AsDouble`, including propagating any // handled by `PyComplex_{Real,Imag}AsDouble`, including propagating any

View File

@ -1425,11 +1425,8 @@ where
T: PyTypeInfo, T: PyTypeInfo,
{ {
/// Extracts `Self` from the source `PyObject`. /// Extracts `Self` from the source `PyObject`.
fn extract(ob: &'a PyAny) -> PyResult<Self> { fn extract_bound(ob: &Bound<'a, PyAny>) -> PyResult<Self> {
ob.as_borrowed() ob.downcast().map(Clone::clone).map_err(Into::into)
.downcast()
.map(Clone::clone)
.map_err(Into::into)
} }
} }

View File

@ -136,51 +136,6 @@ impl PyAny {
.map(Bound::into_gil_ref) .map(Bound::into_gil_ref)
} }
/// Retrieve an attribute value, skipping the instance dictionary during the lookup but still
/// binding the object to the instance.
///
/// This is useful when trying to resolve Python's "magic" methods like `__getitem__`, which
/// are looked up starting from the type object. This returns an `Option` as it is not
/// typically a direct error for the special lookup to fail, as magic methods are optional in
/// many situations in which they might be called.
///
/// To avoid repeated temporary allocations of Python strings, the [`intern!`] macro can be used
/// to intern `attr_name`.
#[allow(dead_code)] // Currently only used with num-complex+abi3, so dead without that.
pub(crate) fn lookup_special<N>(&self, attr_name: N) -> PyResult<Option<&PyAny>>
where
N: IntoPy<Py<PyString>>,
{
let py = self.py();
let self_type = self.get_type();
let attr = if let Ok(attr) = self_type.getattr(attr_name) {
attr
} else {
return Ok(None);
};
// Manually resolve descriptor protocol.
if cfg!(Py_3_10)
|| unsafe { ffi::PyType_HasFeature(attr.get_type_ptr(), ffi::Py_TPFLAGS_HEAPTYPE) } != 0
{
// This is the preferred faster path, but does not work on static types (generally,
// types defined in extension modules) before Python 3.10.
unsafe {
let descr_get_ptr = ffi::PyType_GetSlot(attr.get_type_ptr(), ffi::Py_tp_descr_get);
if descr_get_ptr.is_null() {
return Ok(Some(attr));
}
let descr_get: ffi::descrgetfunc = std::mem::transmute(descr_get_ptr);
let ret = descr_get(attr.as_ptr(), self.as_ptr(), self_type.as_ptr());
py.from_owned_ptr_or_err(ret).map(Some)
}
} else if let Ok(descr_get) = attr.get_type().getattr(crate::intern!(py, "__get__")) {
descr_get.call1((attr, self, self_type)).map(Some)
} else {
Ok(Some(attr))
}
}
/// Sets an attribute value. /// Sets an attribute value.
/// ///
/// This is equivalent to the Python expression `self.attr_name = value`. /// This is equivalent to the Python expression `self.attr_name = value`.
@ -1666,9 +1621,9 @@ pub trait PyAnyMethods<'py> {
/// Extracts some type from the Python object. /// Extracts some type from the Python object.
/// ///
/// This is a wrapper function around [`FromPyObject::extract()`]. /// This is a wrapper function around [`FromPyObject::extract()`].
fn extract<'a, D>(&'a self) -> PyResult<D> fn extract<D>(&self) -> PyResult<D>
where where
D: FromPyObject<'a>; D: FromPyObject<'py>;
/// Returns the reference count for the Python object. /// Returns the reference count for the Python object.
fn get_refcnt(&self) -> isize; fn get_refcnt(&self) -> isize;
@ -2202,11 +2157,11 @@ impl<'py> PyAnyMethods<'py> for Bound<'py, PyAny> {
std::mem::transmute(self) std::mem::transmute(self)
} }
fn extract<'a, D>(&'a self) -> PyResult<D> fn extract<D>(&self) -> PyResult<D>
where where
D: FromPyObject<'a>, D: FromPyObject<'py>,
{ {
FromPyObject::extract(self.as_gil_ref()) FromPyObject::extract_bound(self)
} }
fn get_refcnt(&self) -> isize { fn get_refcnt(&self) -> isize {
@ -2293,13 +2248,64 @@ impl<'py> PyAnyMethods<'py> for Bound<'py, PyAny> {
} }
} }
impl<'py> Bound<'py, PyAny> {
/// Retrieve an attribute value, skipping the instance dictionary during the lookup but still
/// binding the object to the instance.
///
/// This is useful when trying to resolve Python's "magic" methods like `__getitem__`, which
/// are looked up starting from the type object. This returns an `Option` as it is not
/// typically a direct error for the special lookup to fail, as magic methods are optional in
/// many situations in which they might be called.
///
/// To avoid repeated temporary allocations of Python strings, the [`intern!`] macro can be used
/// to intern `attr_name`.
#[allow(dead_code)] // Currently only used with num-complex+abi3, so dead without that.
pub(crate) fn lookup_special<N>(&self, attr_name: N) -> PyResult<Option<Bound<'py, PyAny>>>
where
N: IntoPy<Py<PyString>>,
{
let py = self.py();
let self_type = self.get_type().as_borrowed();
let attr = if let Ok(attr) = self_type.getattr(attr_name) {
attr
} else {
return Ok(None);
};
// Manually resolve descriptor protocol.
if cfg!(Py_3_10)
|| unsafe { ffi::PyType_HasFeature(attr.get_type_ptr(), ffi::Py_TPFLAGS_HEAPTYPE) } != 0
{
// This is the preferred faster path, but does not work on static types (generally,
// types defined in extension modules) before Python 3.10.
unsafe {
let descr_get_ptr = ffi::PyType_GetSlot(attr.get_type_ptr(), ffi::Py_tp_descr_get);
if descr_get_ptr.is_null() {
return Ok(Some(attr));
}
let descr_get: ffi::descrgetfunc = std::mem::transmute(descr_get_ptr);
let ret = descr_get(attr.as_ptr(), self.as_ptr(), self_type.as_ptr());
ret.assume_owned_or_err(py).map(Some)
}
} else if let Ok(descr_get) = attr
.get_type()
.as_borrowed()
.getattr(crate::intern!(py, "__get__"))
{
descr_get.call1((attr, self, self_type)).map(Some)
} else {
Ok(Some(attr))
}
}
}
#[cfg(test)] #[cfg(test)]
#[cfg_attr(not(feature = "gil-refs"), allow(deprecated))] #[cfg_attr(not(feature = "gil-refs"), allow(deprecated))]
mod tests { mod tests {
use crate::{ use crate::{
basic::CompareOp, basic::CompareOp,
types::{IntoPyDict, PyAny, PyBool, PyList, PyLong, PyModule}, types::{any::PyAnyMethods, IntoPyDict, PyAny, PyBool, PyList, PyLong, PyModule},
PyTypeInfo, Python, ToPyObject, PyNativeType, PyTypeInfo, Python, ToPyObject,
}; };
#[test] #[test]
@ -2344,8 +2350,13 @@ class NonHeapNonDescriptorInt:
.unwrap(); .unwrap();
let int = crate::intern!(py, "__int__"); let int = crate::intern!(py, "__int__");
let eval_int = let eval_int = |obj: &PyAny| {
|obj: &PyAny| obj.lookup_special(int)?.unwrap().call0()?.extract::<u32>(); obj.as_borrowed()
.lookup_special(int)?
.unwrap()
.call0()?
.extract::<u32>()
};
let simple = module.getattr("SimpleInt").unwrap().call0().unwrap(); let simple = module.getattr("SimpleInt").unwrap().call0().unwrap();
assert_eq!(eval_int(simple).unwrap(), 1); assert_eq!(eval_int(simple).unwrap(), 1);
@ -2354,7 +2365,7 @@ class NonHeapNonDescriptorInt:
let no_descriptor = module.getattr("NoDescriptorInt").unwrap().call0().unwrap(); let no_descriptor = module.getattr("NoDescriptorInt").unwrap().call0().unwrap();
assert_eq!(eval_int(no_descriptor).unwrap(), 1); assert_eq!(eval_int(no_descriptor).unwrap(), 1);
let missing = module.getattr("NoInt").unwrap().call0().unwrap(); let missing = module.getattr("NoInt").unwrap().call0().unwrap();
assert!(missing.lookup_special(int).unwrap().is_none()); assert!(missing.as_borrowed().lookup_special(int).unwrap().is_none());
// Note the instance override should _not_ call the instance method that returns 2, // Note the instance override should _not_ call the instance method that returns 2,
// because that's not how special lookups are meant to work. // because that's not how special lookups are meant to work.
let instance_override = module.getattr("instance_override").unwrap(); let instance_override = module.getattr("instance_override").unwrap();
@ -2364,7 +2375,7 @@ class NonHeapNonDescriptorInt:
.unwrap() .unwrap()
.call0() .call0()
.unwrap(); .unwrap();
assert!(descriptor_error.lookup_special(int).is_err()); assert!(descriptor_error.as_borrowed().lookup_special(int).is_err());
let nonheap_nondescriptor = module let nonheap_nondescriptor = module
.getattr("NonHeapNonDescriptorInt") .getattr("NonHeapNonDescriptorInt")
.unwrap() .unwrap()

View File

@ -5,6 +5,8 @@ use crate::{
PyObject, PyResult, Python, ToPyObject, PyObject, PyResult, Python, ToPyObject,
}; };
use super::any::PyAnyMethods;
/// Represents a Python `bool`. /// Represents a Python `bool`.
#[repr(transparent)] #[repr(transparent)]
pub struct PyBool(PyAny); pub struct PyBool(PyAny);
@ -75,8 +77,8 @@ impl IntoPy<PyObject> for bool {
/// Converts a Python `bool` to a Rust `bool`. /// Converts a Python `bool` to a Rust `bool`.
/// ///
/// Fails with `TypeError` if the input is not a Python `bool`. /// Fails with `TypeError` if the input is not a Python `bool`.
impl<'source> FromPyObject<'source> for bool { impl FromPyObject<'_> for bool {
fn extract(obj: &'source PyAny) -> PyResult<Self> { fn extract_bound(obj: &Bound<'_, PyAny>) -> PyResult<Self> {
let err = match obj.downcast::<PyBool>() { let err = match obj.downcast::<PyBool>() {
Ok(obj) => return Ok(obj.is_true()), Ok(obj) => return Ok(obj.is_true()),
Err(err) => err, Err(err) => err,
@ -87,7 +89,7 @@ impl<'source> FromPyObject<'source> for bool {
.name() .name()
.map_or(false, |name| name == "numpy.bool_") .map_or(false, |name| name == "numpy.bool_")
{ {
let missing_conversion = |obj: &PyAny| { let missing_conversion = |obj: &Bound<'_, PyAny>| {
PyTypeError::new_err(format!( PyTypeError::new_err(format!(
"object of type '{}' does not define a '__bool__' conversion", "object of type '{}' does not define a '__bool__' conversion",
obj.get_type() obj.get_type()
@ -117,7 +119,7 @@ impl<'source> FromPyObject<'source> for bool {
.lookup_special(crate::intern!(obj.py(), "__bool__"))? .lookup_special(crate::intern!(obj.py(), "__bool__"))?
.ok_or_else(|| missing_conversion(obj))?; .ok_or_else(|| missing_conversion(obj))?;
let obj = meth.call0()?.downcast::<PyBool>()?; let obj = meth.call0()?.downcast_into::<PyBool>()?;
return Ok(obj.is_true()); return Ok(obj.is_true());
} }
} }

View File

@ -917,13 +917,13 @@ mod tests {
assert_eq!(iter.size_hint(), (3, Some(3))); assert_eq!(iter.size_hint(), (3, Some(3)));
assert_eq!(1_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(1, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (2, Some(2))); assert_eq!(iter.size_hint(), (2, Some(2)));
assert_eq!(2_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(2, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (1, Some(1))); assert_eq!(iter.size_hint(), (1, Some(1)));
assert_eq!(3_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(3, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.size_hint(), (0, Some(0)));
assert!(iter.next().is_none()); assert!(iter.next().is_none());
@ -940,13 +940,13 @@ mod tests {
assert_eq!(iter.size_hint(), (3, Some(3))); assert_eq!(iter.size_hint(), (3, Some(3)));
assert_eq!(3_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(3, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (2, Some(2))); assert_eq!(iter.size_hint(), (2, Some(2)));
assert_eq!(2_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(2, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (1, Some(1))); assert_eq!(iter.size_hint(), (1, Some(1)));
assert_eq!(1_i32, iter.next().unwrap().extract::<'_, i32>().unwrap()); assert_eq!(1, iter.next().unwrap().extract::<i32>().unwrap());
assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.size_hint(), (0, Some(0)));
assert!(iter.next().is_none()); assert!(iter.next().is_none());