Represent Python types
The TypeInfo structure represents Python types used in hints. Its Display implementation converts it to the exact syntax for it to appear in a type hint.
This commit is contained in:
parent
13e8efaeae
commit
8898bc9900
|
@ -0,0 +1,4 @@
|
|||
/// Runtime inspection of objects exposed to Python.
|
||||
///
|
||||
/// Tracking issue: <https://github.com/PyO3/pyo3/issues/2454>.
|
||||
pub mod types;
|
|
@ -0,0 +1,396 @@
|
|||
use std::fmt::{Display, Formatter};
|
||||
|
||||
/// Designation of a Python type.
|
||||
///
|
||||
/// This enum is used to handle advanced types, such as types with generics.
|
||||
/// Its [`Display`] implementation can be used to convert to the type hint notation (e.g. `List[int]`).
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub enum TypeInfo {
|
||||
/// The type `typing.Any`, which represents any possible value (unknown type).
|
||||
Any,
|
||||
/// The type `typing.None`.
|
||||
None,
|
||||
/// The type `typing.NoReturn`, which represents functions that never return (they can still panic / throw, similar to `never` in Rust).
|
||||
NoReturn,
|
||||
/// The type `typing.Callable`.
|
||||
///
|
||||
/// The first argument represents the parameters of the callable:
|
||||
/// - `Some` of a vector of types to represent the signature,
|
||||
/// - `None` if the signature is unknown (allows any number of arguments with type `Any`).
|
||||
///
|
||||
/// The second argument represents the return type.
|
||||
Callable(Option<Vec<TypeInfo>>, Box<TypeInfo>),
|
||||
/// The type `typing.tuple`.
|
||||
///
|
||||
/// The argument represents the contents of the tuple:
|
||||
/// - `Some` of a vector of types to represent the accepted types,
|
||||
/// - `Some` of an empty vector for the empty tuple,
|
||||
/// - `None` if the number and type of accepted values is unknown.
|
||||
///
|
||||
/// If the number of accepted values is unknown, but their type is, use [`Self::UnsizedTypedTuple`].
|
||||
Tuple(Option<Vec<TypeInfo>>),
|
||||
/// The type `typing.Tuple`.
|
||||
///
|
||||
/// Use this variant to represent a tuple of unknown size but of known types.
|
||||
///
|
||||
/// If the type is unknown, or if the number of elements is known, use [`Self::Tuple`].
|
||||
UnsizedTypedTuple(Box<TypeInfo>),
|
||||
/// A Python class.
|
||||
Class {
|
||||
/// The module this class comes from.
|
||||
module: ModuleName,
|
||||
/// The name of this class, as it appears in a type hint.
|
||||
name: &'static str,
|
||||
/// The generics accepted by this class (empty vector if this class is not generic).
|
||||
type_vars: Vec<TypeInfo>,
|
||||
},
|
||||
}
|
||||
|
||||
/// Declares which module a type is a part of.
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub enum ModuleName {
|
||||
/// The type is built-in: it doesn't need to be imported.
|
||||
Builtin,
|
||||
/// The type is in the current module: it doesn't need to be imported in this module, but needs to be imported in others.
|
||||
CurrentModule,
|
||||
/// The type is in the specified module.
|
||||
Module(&'static str),
|
||||
}
|
||||
|
||||
impl TypeInfo {
|
||||
/// Returns the module in which a type is declared.
|
||||
///
|
||||
/// Returns `None` if the type is declared in the current module.
|
||||
pub fn module_name(&self) -> Option<&'static str> {
|
||||
match self {
|
||||
TypeInfo::Any
|
||||
| TypeInfo::None
|
||||
| TypeInfo::NoReturn
|
||||
| TypeInfo::Callable(_, _)
|
||||
| TypeInfo::Tuple(_)
|
||||
| TypeInfo::UnsizedTypedTuple(_) => Some("typing"),
|
||||
TypeInfo::Class { module, .. } => match module {
|
||||
ModuleName::Builtin => Some("builtins"),
|
||||
ModuleName::CurrentModule => None,
|
||||
ModuleName::Module(name) => Some(name),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the name of a type.
|
||||
///
|
||||
/// The name of a type is the part of the hint that is not generic (e.g. `List` instead of `List[int]`).
|
||||
pub fn name(&self) -> &'static str {
|
||||
match self {
|
||||
TypeInfo::Any => "Any",
|
||||
TypeInfo::None => "None",
|
||||
TypeInfo::NoReturn => "NoReturn",
|
||||
TypeInfo::Callable(_, _) => "Callable",
|
||||
TypeInfo::Tuple(_) => "Tuple",
|
||||
TypeInfo::UnsizedTypedTuple(_) => "Tuple",
|
||||
TypeInfo::Class { name, .. } => name,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Utilities for easily instantiating TypeInfo structures for built-in/common types.
|
||||
impl TypeInfo {
|
||||
/// The Python `Optional` type.
|
||||
pub fn optional_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Optional",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Union` type.
|
||||
pub fn union_of(types: &[TypeInfo]) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Union",
|
||||
type_vars: types.to_vec(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `List` type.
|
||||
pub fn list_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "List",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Sequence` type.
|
||||
pub fn sequence_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Sequence",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Set` type.
|
||||
pub fn set_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Set",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `FrozenSet` type.
|
||||
pub fn frozen_set_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "FrozenSet",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Iterable` type.
|
||||
pub fn iterable_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Iterable",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Iterator` type.
|
||||
pub fn iterator_of(t: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Iterator",
|
||||
type_vars: vec![t],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Dict` type.
|
||||
pub fn dict_of(k: TypeInfo, v: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Dict",
|
||||
type_vars: vec![k, v],
|
||||
}
|
||||
}
|
||||
|
||||
/// The Python `Mapping` type.
|
||||
pub fn mapping_of(k: TypeInfo, v: TypeInfo) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Module("typing"),
|
||||
name: "Mapping",
|
||||
type_vars: vec![k, v],
|
||||
}
|
||||
}
|
||||
|
||||
/// Convenience factory for non-generic builtins (e.g. `int`).
|
||||
pub fn builtin(name: &'static str) -> TypeInfo {
|
||||
TypeInfo::Class {
|
||||
module: ModuleName::Builtin,
|
||||
name,
|
||||
type_vars: vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for TypeInfo {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
TypeInfo::Any | TypeInfo::None | TypeInfo::NoReturn => write!(f, "{}", self.name()),
|
||||
TypeInfo::Callable(input, output) => {
|
||||
write!(f, "Callable[")?;
|
||||
|
||||
if let Some(input) = input {
|
||||
write!(f, "[")?;
|
||||
let mut comma = false;
|
||||
for arg in input {
|
||||
if comma {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
write!(f, "{}", arg)?;
|
||||
comma = true;
|
||||
}
|
||||
write!(f, "]")?;
|
||||
} else {
|
||||
write!(f, "...")?;
|
||||
}
|
||||
|
||||
write!(f, ", {}]", output)
|
||||
}
|
||||
TypeInfo::Tuple(types) => {
|
||||
write!(f, "Tuple[")?;
|
||||
|
||||
if let Some(types) = types {
|
||||
if types.is_empty() {
|
||||
write!(f, "()")?;
|
||||
} else {
|
||||
let mut comma = false;
|
||||
for t in types {
|
||||
if comma {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
write!(f, "{}", t)?;
|
||||
comma = true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
write!(f, "...")?;
|
||||
}
|
||||
|
||||
write!(f, "]")
|
||||
}
|
||||
TypeInfo::UnsizedTypedTuple(t) => write!(f, "Tuple[{}, ...]", t),
|
||||
TypeInfo::Class {
|
||||
name, type_vars, ..
|
||||
} => {
|
||||
write!(f, "{}", name)?;
|
||||
|
||||
if !type_vars.is_empty() {
|
||||
write!(f, "[")?;
|
||||
|
||||
let mut comma = false;
|
||||
for var in type_vars {
|
||||
if comma {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
write!(f, "{}", var)?;
|
||||
comma = true;
|
||||
}
|
||||
|
||||
write!(f, "]")
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use crate::inspect::types::{ModuleName, TypeInfo};
|
||||
|
||||
fn assert_display(t: &TypeInfo, expected: &str) {
|
||||
assert_eq!(format!("{}", t), expected)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn basic() {
|
||||
assert_display(&TypeInfo::Any, "Any");
|
||||
assert_display(&TypeInfo::None, "None");
|
||||
assert_display(&TypeInfo::NoReturn, "NoReturn");
|
||||
|
||||
assert_display(&TypeInfo::builtin("int"), "int");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn callable() {
|
||||
let any_to_int = TypeInfo::Callable(None, Box::new(TypeInfo::builtin("int")));
|
||||
assert_display(&any_to_int, "Callable[..., int]");
|
||||
|
||||
let sum = TypeInfo::Callable(
|
||||
Some(vec![TypeInfo::builtin("int"), TypeInfo::builtin("int")]),
|
||||
Box::new(TypeInfo::builtin("int")),
|
||||
);
|
||||
assert_display(&sum, "Callable[[int, int], int]");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn tuple() {
|
||||
let any = TypeInfo::Tuple(None);
|
||||
assert_display(&any, "Tuple[...]");
|
||||
|
||||
let triple = TypeInfo::Tuple(Some(vec![
|
||||
TypeInfo::builtin("int"),
|
||||
TypeInfo::builtin("str"),
|
||||
TypeInfo::builtin("bool"),
|
||||
]));
|
||||
assert_display(&triple, "Tuple[int, str, bool]");
|
||||
|
||||
let empty = TypeInfo::Tuple(Some(vec![]));
|
||||
assert_display(&empty, "Tuple[()]");
|
||||
|
||||
let typed = TypeInfo::UnsizedTypedTuple(Box::new(TypeInfo::builtin("bool")));
|
||||
assert_display(&typed, "Tuple[bool, ...]");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn class() {
|
||||
let class1 = TypeInfo::Class {
|
||||
module: ModuleName::CurrentModule,
|
||||
name: "MyClass",
|
||||
type_vars: vec![],
|
||||
};
|
||||
assert_display(&class1, "MyClass");
|
||||
|
||||
let class2 = TypeInfo::Class {
|
||||
module: ModuleName::CurrentModule,
|
||||
name: "MyClass",
|
||||
type_vars: vec![TypeInfo::builtin("int"), TypeInfo::builtin("bool")],
|
||||
};
|
||||
assert_display(&class2, "MyClass[int, bool]");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn collections() {
|
||||
let int = TypeInfo::builtin("int");
|
||||
let bool = TypeInfo::builtin("bool");
|
||||
let str = TypeInfo::builtin("str");
|
||||
|
||||
let list = TypeInfo::list_of(int.clone());
|
||||
assert_display(&list, "List[int]");
|
||||
|
||||
let sequence = TypeInfo::sequence_of(bool.clone());
|
||||
assert_display(&sequence, "Sequence[bool]");
|
||||
|
||||
let optional = TypeInfo::optional_of(str.clone());
|
||||
assert_display(&optional, "Optional[str]");
|
||||
|
||||
let iterable = TypeInfo::iterable_of(int.clone());
|
||||
assert_display(&iterable, "Iterable[int]");
|
||||
|
||||
let iterator = TypeInfo::iterator_of(bool);
|
||||
assert_display(&iterator, "Iterator[bool]");
|
||||
|
||||
let dict = TypeInfo::dict_of(int.clone(), str.clone());
|
||||
assert_display(&dict, "Dict[int, str]");
|
||||
|
||||
let mapping = TypeInfo::mapping_of(int, str.clone());
|
||||
assert_display(&mapping, "Mapping[int, str]");
|
||||
|
||||
let set = TypeInfo::set_of(str.clone());
|
||||
assert_display(&set, "Set[str]");
|
||||
|
||||
let frozen_set = TypeInfo::frozen_set_of(str);
|
||||
assert_display(&frozen_set, "FrozenSet[str]");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn complicated() {
|
||||
let int = TypeInfo::builtin("int");
|
||||
assert_display(&int, "int");
|
||||
|
||||
let bool = TypeInfo::builtin("bool");
|
||||
assert_display(&bool, "bool");
|
||||
|
||||
let str = TypeInfo::builtin("str");
|
||||
assert_display(&str, "str");
|
||||
|
||||
let any = TypeInfo::Any;
|
||||
assert_display(&any, "Any");
|
||||
|
||||
let params = TypeInfo::union_of(&[int.clone(), str]);
|
||||
assert_display(¶ms, "Union[int, str]");
|
||||
|
||||
let func = TypeInfo::Callable(Some(vec![params, any]), Box::new(bool));
|
||||
assert_display(&func, "Callable[[Union[int, str], Any], bool]");
|
||||
|
||||
let dict = TypeInfo::mapping_of(int, func);
|
||||
assert_display(
|
||||
&dict,
|
||||
"Mapping[int, Callable[[Union[int, str], Any], bool]]",
|
||||
);
|
||||
}
|
||||
}
|
|
@ -407,6 +407,8 @@ mod macros;
|
|||
#[cfg(all(test, feature = "macros"))]
|
||||
mod test_hygiene;
|
||||
|
||||
pub mod inspect;
|
||||
|
||||
/// Test readme and user guide
|
||||
#[cfg(doctest)]
|
||||
pub mod doc_test {
|
||||
|
|
Loading…
Reference in New Issue