Merge pull request #995 from scalexm/recursive-attr

Re-enable recursive class attributes
This commit is contained in:
Yuji Kanagawa 2020-06-24 23:16:07 +09:00 committed by GitHub
commit 10306bd386
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 112 additions and 59 deletions

View File

@ -31,7 +31,6 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
### Removed
- Remove `ManagedPyRef` (unused, and needs specialization) [#930](https://github.com/PyO3/pyo3/pull/930)
- Disable `#[classattr]` where the class attribute is the same type as the class. (This may be re-enabled in the future; the previous implemenation was unsound.) [#975](https://github.com/PyO3/pyo3/pull/975)
### Fixed
- Fix passing explicit `None` to `Option<T>` argument `#[pyfunction]` with a default value. [#936](https://github.com/PyO3/pyo3/pull/936)

View File

@ -565,11 +565,6 @@ impl MyClass {
}
```
Note that defining a class attribute of the same type as the class will make the class unusable.
Attempting to use the class will cause a panic reading `Recursive evaluation of type_object`.
As an alternative, if having the attribute on instances is acceptable, create a `#[getter]` which
uses a `GILOnceCell` to cache the attribute value. Or add the attribute to a module instead.
## Callable objects
To specify a custom `__call__` method for a custom class, the method needs to be annotated with

View File

@ -58,6 +58,10 @@ impl<T> GILOnceCell<T> {
/// calling `f()`. Even when this happens `GILOnceCell` guarantees that only **one** write
/// to the cell ever occurs - other threads will simply discard the value they compute and
/// return the result of the first complete computation.
/// 3) if f() does not release the GIL and does not panic, it is guaranteed to be called
/// exactly once, even if multiple threads attempt to call `get_or_init`
/// 4) if f() can panic but still does not release the GIL, it may be called multiple times,
/// but it is guaranteed that f() will never be called concurrently
pub fn get_or_init<F>(&self, py: Python, f: F) -> &T
where
F: FnOnce() -> T,

View File

@ -1,10 +1,10 @@
//! `PyClass` trait
use crate::class::methods::{PyClassAttributeDef, PyMethodDefType, PyMethods};
use crate::class::proto_methods::PyProtoMethods;
use crate::conversion::{AsPyPointer, FromPyPointer, IntoPyPointer, ToPyObject};
use crate::conversion::{AsPyPointer, FromPyPointer};
use crate::pyclass_slots::{PyClassDict, PyClassWeakRef};
use crate::type_object::{type_flags, PyLayout};
use crate::types::{PyAny, PyDict};
use crate::types::PyAny;
use crate::{class, ffi, PyCell, PyErr, PyNativeType, PyResult, PyTypeInfo, Python};
use std::ffi::CString;
use std::os::raw::c_void;
@ -188,7 +188,7 @@ where
// buffer protocol
type_object.tp_as_buffer = T::buffer_methods().map_or_else(ptr::null_mut, |p| p.as_ptr());
let (new, call, mut methods, attrs) = py_class_method_defs::<T>();
let (new, call, mut methods) = py_class_method_defs::<T>();
// normal methods
if !methods.is_empty() {
@ -196,15 +196,6 @@ where
type_object.tp_methods = Box::into_raw(methods.into_boxed_slice()) as _;
}
// class attributes
if !attrs.is_empty() {
let dict = PyDict::new(py);
for attr in attrs {
dict.set_item(attr.name, (attr.meth)(py))?;
}
type_object.tp_dict = dict.to_object(py).into_ptr();
}
// __new__ method
type_object.tp_new = new;
// __call__ method
@ -248,14 +239,19 @@ fn py_class_flags<T: PyTypeInfo>(type_object: &mut ffi::PyTypeObject) {
}
}
pub(crate) fn py_class_attributes<T: PyMethods>() -> impl Iterator<Item = PyClassAttributeDef> {
T::py_methods().into_iter().filter_map(|def| match def {
PyMethodDefType::ClassAttribute(attr) => Some(*attr),
_ => None,
})
}
fn py_class_method_defs<T: PyMethods>() -> (
Option<ffi::newfunc>,
Option<ffi::PyCFunctionWithKeywords>,
Vec<ffi::PyMethodDef>,
Vec<PyClassAttributeDef>,
) {
let mut defs = Vec::new();
let mut attrs = Vec::new();
let mut call = None;
let mut new = None;
@ -278,14 +274,11 @@ fn py_class_method_defs<T: PyMethods>() -> (
| PyMethodDefType::Static(ref def) => {
defs.push(def.as_method_def());
}
PyMethodDefType::ClassAttribute(def) => {
attrs.push(def);
}
_ => (),
}
}
(new, call, defs, attrs)
(new, call, defs)
}
fn py_class_properties<T: PyMethods>() -> Vec<ffi::PyGetSetDef> {

View File

@ -1,11 +1,12 @@
// Copyright (c) 2017-present PyO3 Project and Contributors
//! Python type object information
use crate::conversion::IntoPyPointer;
use crate::once_cell::GILOnceCell;
use crate::pyclass::{initialize_type_object, PyClass};
use crate::pyclass::{initialize_type_object, py_class_attributes, PyClass};
use crate::pyclass_init::PyObjectInit;
use crate::types::{PyAny, PyType};
use crate::{ffi, AsPyPointer, PyNativeType, Python};
use crate::{ffi, AsPyPointer, PyErr, PyNativeType, PyObject, PyResult, Python};
use parking_lot::{const_mutex, Mutex};
use std::thread::{self, ThreadId};
@ -139,8 +140,10 @@ where
pub struct LazyStaticType {
// Boxed because Python expects the type object to have a stable address.
value: GILOnceCell<*mut ffi::PyTypeObject>,
// Threads which have begun initialization. Used for reentrant initialization detection.
// Threads which have begun initialization of the `tp_dict`. Used for
// reentrant initialization detection.
initializing_threads: Mutex<Vec<ThreadId>>,
tp_dict_filled: GILOnceCell<PyResult<()>>,
}
impl LazyStaticType {
@ -148,43 +151,98 @@ impl LazyStaticType {
LazyStaticType {
value: GILOnceCell::new(),
initializing_threads: const_mutex(Vec::new()),
tp_dict_filled: GILOnceCell::new(),
}
}
pub fn get_or_init<T: PyClass>(&self, py: Python) -> *mut ffi::PyTypeObject {
*self.value.get_or_init(py, || {
{
// Code evaluated at class init time, such as class attributes, might lead to
// recursive initalization of the type object if the class attribute is the same
// type as the class.
//
// That could lead to all sorts of unsafety such as using incomplete type objects
// to initialize class instances, so recursive initialization is prevented.
let thread_id = thread::current().id();
let mut threads = self.initializing_threads.lock();
if threads.contains(&thread_id) {
panic!("Recursive initialization of type_object for {}", T::NAME);
} else {
threads.push(thread_id)
}
}
// Okay, not recursive initialization - can proceed safely.
let type_object = *self.value.get_or_init(py, || {
let mut type_object = Box::new(ffi::PyTypeObject_INIT);
initialize_type_object::<T>(py, T::MODULE, type_object.as_mut()).unwrap_or_else(|e| {
e.print(py);
panic!("An error occurred while initializing class {}", T::NAME)
});
Box::into_raw(type_object)
});
// We might want to fill the `tp_dict` with python instances of `T`
// itself. In order to do so, we must first initialize the type object
// with an empty `tp_dict`: now we can create instances of `T`.
//
// Then we fill the `tp_dict`. Multiple threads may try to fill it at
// the same time, but only one of them will succeed.
//
// More importantly, if a thread is performing initialization of the
// `tp_dict`, it can still request the type object through `get_or_init`,
// but the `tp_dict` may appear empty of course.
if self.tp_dict_filled.get(py).is_some() {
// `tp_dict` is already filled: ok.
return type_object;
}
{
let thread_id = thread::current().id();
let mut threads = self.initializing_threads.lock();
if threads.contains(&thread_id) {
// Reentrant call: just return the type object, even if the
// `tp_dict` is not filled yet.
return type_object;
}
threads.push(thread_id);
}
// Pre-compute the class attribute objects: this can temporarily
// release the GIL since we're calling into arbitrary user code. It
// means that another thread can continue the initialization in the
// meantime: at worst, we'll just make a useless computation.
let mut items = vec![];
for attr in py_class_attributes::<T>() {
items.push((attr.name, (attr.meth)(py)));
}
// Now we hold the GIL and we can assume it won't be released until we
// return from the function.
let result = self.tp_dict_filled.get_or_init(py, move || {
let tp_dict = unsafe { (*type_object).tp_dict };
let result = initialize_tp_dict(py, tp_dict, items);
// See discussion on #982 for why we need this.
unsafe { ffi::PyType_Modified(type_object) };
// Initialization successfully complete, can clear the thread list.
// (No futher calls to get_or_init() will try to init, on any thread.)
// (No further calls to get_or_init() will try to init, on any thread.)
*self.initializing_threads.lock() = Vec::new();
result
});
Box::into_raw(type_object)
})
if let Err(err) = result {
err.clone_ref(py).print(py);
panic!("An error occured while initializing `{}.__dict__`", T::NAME);
}
type_object
}
}
fn initialize_tp_dict(
py: Python,
tp_dict: *mut ffi::PyObject,
items: Vec<(&'static str, PyObject)>,
) -> PyResult<()> {
use std::ffi::CString;
// We hold the GIL: the dictionary update can be considered atomic from
// the POV of other threads.
for (key, val) in items {
let ret = unsafe {
ffi::PyDict_SetItemString(tp_dict, CString::new(key)?.as_ptr(), val.into_ptr())
};
if ret < 0 {
return Err(PyErr::fetch(py));
}
}
Ok(())
}
// This is necessary for making static `LazyStaticType`s
unsafe impl Sync for LazyStaticType {}

View File

@ -34,6 +34,11 @@ impl Foo {
fn bar() -> Bar {
Bar { x: 2 }
}
#[classattr]
fn foo() -> Foo {
Foo { x: 1 }
}
}
#[test]
@ -54,23 +59,22 @@ fn class_attributes_are_immutable() {
py_expect_exception!(py, foo_obj, "foo_obj.a = 6", TypeError);
}
#[pyclass]
struct SelfClassAttribute {
#[pyo3(get)]
x: i32,
}
#[pymethods]
impl SelfClassAttribute {
impl Bar {
#[classattr]
const SELF: SelfClassAttribute = SelfClassAttribute { x: 1 };
fn foo() -> Foo {
Foo { x: 3 }
}
}
#[test]
#[should_panic(expected = "Recursive initialization of type_object for SelfClassAttribute")]
fn recursive_class_attributes() {
let gil = Python::acquire_gil();
let py = gil.python();
py.get_type::<SelfClassAttribute>();
let foo_obj = py.get_type::<Foo>();
let bar_obj = py.get_type::<Bar>();
py_assert!(py, foo_obj, "foo_obj.foo.x == 1");
py_assert!(py, foo_obj, "foo_obj.bar.x == 2");
py_assert!(py, bar_obj, "bar_obj.foo.x == 3");
}