open-vault/vendor/github.com/dgrijalva/jwt-go/v4/ecdsa.go

174 lines
4.7 KiB
Go

package jwt
import (
"crypto"
"crypto/ecdsa"
"crypto/rand"
"encoding/asn1"
"fmt"
"math/big"
)
// SigningMethodECDSA implements the ECDSA family of signing methods signing methods
// Expects *ecdsa.PrivateKey for signing and *ecdsa.PublicKey for verification
type SigningMethodECDSA struct {
Name string
Hash crypto.Hash
KeySize int
CurveBits int
}
// Mirrors the struct from crypto/ecdsa, we expect ecdsa.PrivateKey.Sign function to return this struct asn1 encoded
type ecdsaSignature struct {
R, S *big.Int
}
// Specific instances for EC256 and company
var (
SigningMethodES256 *SigningMethodECDSA
SigningMethodES384 *SigningMethodECDSA
SigningMethodES512 *SigningMethodECDSA
)
func init() {
// ES256
SigningMethodES256 = &SigningMethodECDSA{"ES256", crypto.SHA256, 32, 256}
RegisterSigningMethod(SigningMethodES256.Alg(), func() SigningMethod {
return SigningMethodES256
})
// ES384
SigningMethodES384 = &SigningMethodECDSA{"ES384", crypto.SHA384, 48, 384}
RegisterSigningMethod(SigningMethodES384.Alg(), func() SigningMethod {
return SigningMethodES384
})
// ES512
SigningMethodES512 = &SigningMethodECDSA{"ES512", crypto.SHA512, 66, 521}
RegisterSigningMethod(SigningMethodES512.Alg(), func() SigningMethod {
return SigningMethodES512
})
}
// Alg implements SigningMethod
func (m *SigningMethodECDSA) Alg() string {
return m.Name
}
// Verify implements the Verify method from SigningMethod
// For this verify method, key must be an ecdsa.PublicKey struct
func (m *SigningMethodECDSA) Verify(signingString, signature string, key interface{}) error {
var err error
// Decode the signature
var sig []byte
if sig, err = DecodeSegment(signature); err != nil {
return err
}
// Get the key
var ecdsaKey *ecdsa.PublicKey
var ok bool
switch k := key.(type) {
case *ecdsa.PublicKey:
ecdsaKey = k
case crypto.Signer:
pub := k.Public()
if ecdsaKey, ok = pub.(*ecdsa.PublicKey); !ok {
return &InvalidKeyError{Message: fmt.Sprintf("crypto.Signer returned an unexpected public key type: %T", pub)}
}
default:
return NewInvalidKeyTypeError("*ecdsa.PublicKey or crypto.Signer", key)
}
if len(sig) != 2*m.KeySize {
return &UnverfiableTokenError{Message: "signature length is invalid"}
}
r := big.NewInt(0).SetBytes(sig[:m.KeySize])
s := big.NewInt(0).SetBytes(sig[m.KeySize:])
// Create hasher
if !m.Hash.Available() {
return ErrHashUnavailable
}
hasher := m.Hash.New()
hasher.Write([]byte(signingString))
// Verify the signature
if verifystatus := ecdsa.Verify(ecdsaKey, hasher.Sum(nil), r, s); verifystatus == true {
return nil
}
return new(InvalidSignatureError)
}
// Sign implements the Sign method from SigningMethod
// For this signing method, key must be an ecdsa.PrivateKey struct
func (m *SigningMethodECDSA) Sign(signingString string, key interface{}) (string, error) {
var signer crypto.Signer
var pub *ecdsa.PublicKey
var ok bool
if signer, ok = key.(crypto.Signer); !ok {
return "", NewInvalidKeyTypeError("*ecdsa.PrivateKey or crypto.Signer", key)
}
//sanity check that the signer is an ecdsa signer
if pub, ok = signer.Public().(*ecdsa.PublicKey); !ok {
return "", &InvalidKeyError{Message: fmt.Sprintf("signer returned unexpected public key type: %T", pub)}
}
// Create the hasher
if !m.Hash.Available() {
return "", ErrHashUnavailable
}
hasher := m.Hash.New()
hasher.Write([]byte(signingString))
// Sign the string and return r, s
asn1Sig, err := signer.Sign(rand.Reader, hasher.Sum(nil), m.Hash)
if err != nil {
return "", err
}
//the ecdsa.PrivateKey Sign function returns an asn1 encoded signature which is not what we want
// so we unmarshal it to get r and s to encode as described in rfc7518 section-3.4
var ecdsaSig ecdsaSignature
rest, err := asn1.Unmarshal(asn1Sig, &ecdsaSig)
if err != nil {
return "", err
}
if len(rest) != 0 {
return "", &UnverfiableTokenError{Message: "unexpected extra bytes in ecda signature"}
}
curveBits := pub.Curve.Params().BitSize
if m.CurveBits != curveBits {
return "", &InvalidKeyError{Message: "CurveBits in public key don't match those in signing method"}
}
keyBytes := curveBits / 8
if curveBits%8 > 0 {
keyBytes++
}
// We serialize the output (r and s) into big-endian byte arrays and pad
// them with zeros on the left to make sure the sizes work out. Both arrays
// must be keyBytes long, and the output must be 2*keyBytes long.
rBytes := ecdsaSig.R.Bytes()
rBytesPadded := make([]byte, keyBytes)
copy(rBytesPadded[keyBytes-len(rBytes):], rBytes)
sBytes := ecdsaSig.S.Bytes()
sBytesPadded := make([]byte, keyBytes)
copy(sBytesPadded[keyBytes-len(sBytes):], sBytes)
out := append(rBytesPadded, sBytesPadded...)
return EncodeSegment(out), nil
}