open-vault/helper/metricsutil/gauge_process_test.go

575 lines
14 KiB
Go

package metricsutil
import (
"context"
"errors"
"fmt"
"math/rand"
"reflect"
"sync/atomic"
"testing"
"time"
"github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
)
// SimulatedTime maintains a virtual clock so the test isn't
// dependent upon real time.
// Unfortunately there is no way to run these tests in parallel
// since they rely on the same global timeNow function.
type SimulatedTime struct {
now time.Time
tickerBarrier chan *SimulatedTicker
}
var _ clock = &SimulatedTime{}
type SimulatedTicker struct {
ticker *time.Ticker
duration time.Duration
sender chan time.Time
}
func (s *SimulatedTime) Now() time.Time {
return s.now
}
func (s *SimulatedTime) NewTicker(d time.Duration) *time.Ticker {
// Create a real ticker, but set its duration to an amount that will never fire for real.
// We'll inject times into the channel directly.
replacementChannel := make(chan time.Time)
t := time.NewTicker(1000 * time.Hour)
t.C = replacementChannel
s.tickerBarrier <- &SimulatedTicker{t, d, replacementChannel}
return t
}
func (s *SimulatedTime) waitForTicker(t *testing.T) *SimulatedTicker {
t.Helper()
// System under test should create a ticker within 100ms,
// wait for it to show up or else fail the test.
timeout := time.After(100 * time.Millisecond)
select {
case <-timeout:
t.Fatal("Timeout waiting for ticker creation.")
return nil
case t := <-s.tickerBarrier:
return t
}
}
func (s *SimulatedTime) allowTickers(n int) {
s.tickerBarrier = make(chan *SimulatedTicker, n)
}
func startSimulatedTime() *SimulatedTime {
s := &SimulatedTime{
now: time.Now(),
tickerBarrier: make(chan *SimulatedTicker, 1),
}
return s
}
type SimulatedCollector struct {
numCalls uint32
callBarrier chan uint32
}
func newSimulatedCollector() *SimulatedCollector {
return &SimulatedCollector{
numCalls: 0,
callBarrier: make(chan uint32, 1),
}
}
func (s *SimulatedCollector) waitForCall(t *testing.T) {
timeout := time.After(100 * time.Millisecond)
select {
case <-timeout:
t.Fatal("Timeout waiting for call to collection function.")
return
case <-s.callBarrier:
return
}
}
func (s *SimulatedCollector) EmptyCollectionFunction(ctx context.Context) ([]GaugeLabelValues, error) {
atomic.AddUint32(&s.numCalls, 1)
s.callBarrier <- s.numCalls
return []GaugeLabelValues{}, nil
}
func TestGauge_Creation(t *testing.T) {
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 33 * time.Minute
key := []string{"example", "count"}
labels := []Label{{"gauge", "test"}}
p, err := sink.NewGaugeCollectionProcess(
key,
labels,
c.EmptyCollectionFunction,
log.Default(),
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
if _, ok := p.clock.(defaultClock); !ok {
t.Error("Default clock not installed.")
}
if !reflect.DeepEqual(p.key, key) {
t.Errorf("Key not initialized, got %v but expected %v",
p.key, key)
}
if !reflect.DeepEqual(p.labels, labels) {
t.Errorf("Labels not initialized, got %v but expected %v",
p.key, key)
}
if p.originalInterval != sink.GaugeInterval || p.currentInterval != sink.GaugeInterval {
t.Errorf("Intervals not initialized, got %v and %v, expected %v",
p.originalInterval, p.currentInterval, sink.GaugeInterval)
}
}
func TestGauge_StartDelay(t *testing.T) {
// Work through an entire startup sequence, up to collecting
// the first batch of gauges.
s := startSimulatedTime()
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 2 * time.Hour
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
c.EmptyCollectionFunction,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
go p.Run()
delayTicker := s.waitForTicker(t)
if delayTicker.duration > sink.GaugeInterval {
t.Errorf("Delayed start %v is more than interval %v.",
delayTicker.duration, sink.GaugeInterval)
}
if c.numCalls > 0 {
t.Error("Collection function has been called")
}
// Signal the end of delay, then another ticker should start
delayTicker.sender <- time.Now()
intervalTicker := s.waitForTicker(t)
if intervalTicker.duration != sink.GaugeInterval {
t.Errorf("Ticker duration is %v, expected %v",
intervalTicker.duration, sink.GaugeInterval)
}
if c.numCalls > 0 {
t.Error("Collection function has been called")
}
// Time's up, ensure the collection function is executed.
intervalTicker.sender <- time.Now()
c.waitForCall(t)
if c.numCalls != 1 {
t.Errorf("Collection function called %v times, expected %v.", c.numCalls, 1)
}
p.Stop()
}
func waitForStopped(t *testing.T, p *GaugeCollectionProcess) {
t.Helper()
timeout := time.After(100 * time.Millisecond)
select {
case <-timeout:
t.Fatal("Timeout waiting for process to stop.")
case <-p.stopped:
return
}
}
func TestGauge_StoppedDuringInitialDelay(t *testing.T) {
// Stop the process before it gets into its main loop
s := startSimulatedTime()
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 2 * time.Hour
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
c.EmptyCollectionFunction,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
go p.Run()
// Stop during the initial delay, check that goroutine exits
s.waitForTicker(t)
p.Stop()
waitForStopped(t, p)
}
func TestGauge_StoppedAfterInitialDelay(t *testing.T) {
// Stop the process during its main loop
s := startSimulatedTime()
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 2 * time.Hour
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
c.EmptyCollectionFunction,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
go p.Run()
// Get through initial delay, wait for interval ticker
delayTicker := s.waitForTicker(t)
delayTicker.sender <- time.Now()
s.waitForTicker(t)
p.Stop()
waitForStopped(t, p)
}
func TestGauge_Backoff(t *testing.T) {
s := startSimulatedTime()
s.allowTickers(100)
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 2 * time.Hour
threshold := sink.GaugeInterval / 100
f := func(ctx context.Context) ([]GaugeLabelValues, error) {
atomic.AddUint32(&c.numCalls, 1)
// Move time forward by more than 1% of the gauge interval
s.now = s.now.Add(threshold).Add(time.Second)
c.callBarrier <- c.numCalls
return []GaugeLabelValues{}, nil
}
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
f,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
// Do not run, we'll just going to call an internal function.
p.collectAndFilterGauges()
if p.currentInterval != 2*p.originalInterval {
t.Errorf("Current interval is %v, should be 2x%v.",
p.currentInterval,
p.originalInterval)
}
}
func TestGauge_RestartTimer(t *testing.T) {
s := startSimulatedTime()
c := newSimulatedCollector()
sink := BlackholeSink()
sink.GaugeInterval = 2 * time.Hour
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
c.EmptyCollectionFunction,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
p.resetTicker()
t1 := s.waitForTicker(t)
if t1.duration != p.currentInterval {
t.Fatalf("Bad ticker interval, got %v expected %v",
t1.duration, p.currentInterval)
}
p.currentInterval = 4 * p.originalInterval
p.resetTicker()
t2 := s.waitForTicker(t)
if t2.duration != p.currentInterval {
t.Fatalf("Bad ticker interval, got %v expected %v",
t1.duration, p.currentInterval)
}
}
func waitForDone(t *testing.T,
tick chan<- time.Time,
done <-chan struct{},
) int {
t.Helper()
timeout := time.After(500 * time.Millisecond)
numTicks := 0
for {
select {
case <-timeout:
t.Fatal("Timeout waiting for metrics to be sent.")
case tick <- time.Now():
numTicks += 1
case <-done:
return numTicks
}
}
}
func makeLabels(numLabels int) []GaugeLabelValues {
values := make([]GaugeLabelValues, numLabels)
for i := range values {
values[i].Labels = []Label{
{"test", "true"},
{"which", fmt.Sprintf("%v", i)},
}
values[i].Value = float32(i + 1)
}
return values
}
func TestGauge_InterruptedStreaming(t *testing.T) {
s := startSimulatedTime()
// Long bucket time == low chance of crossing interval
inmemSink := metrics.NewInmemSink(
1000000*time.Hour,
2000000*time.Hour)
sink := NewClusterMetricSink("test", inmemSink)
sink.MaxGaugeCardinality = 500
sink.GaugeInterval = 2 * time.Hour
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
nil, // shouldn't be called
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
// We'll queue up at least two batches; only one will be sent
// unless we give a ticker.
values := makeLabels(75)
done := make(chan struct{})
go func() {
p.streamGaugesToSink(values)
close(done)
}()
p.Stop()
// a nil channel is never writeable
waitForDone(t, nil, done)
// If we start close to the end of an interval, metrics will
// be split across two buckets.
intervals := inmemSink.Data()
if len(intervals) > 1 {
t.Skip("Detected interval crossing.")
}
if len(intervals[0].Gauges) == len(values) {
t.Errorf("Found %v gauges, expected fewer.",
len(intervals[0].Gauges))
}
}
// helper function to create a closure that's a GaugeCollector.
func (c *SimulatedCollector) makeFunctionForValues(
values []GaugeLabelValues,
s *SimulatedTime,
advanceTime time.Duration,
) GaugeCollector {
// A function that returns a static list
return func(ctx context.Context) ([]GaugeLabelValues, error) {
atomic.AddUint32(&c.numCalls, 1)
// TODO: this seems like a data race?
s.now = s.now.Add(advanceTime)
c.callBarrier <- c.numCalls
return values, nil
}
}
func TestGauge_MaximumMeasurements(t *testing.T) {
s := startSimulatedTime()
c := newSimulatedCollector()
// Long bucket time == low chance of crossing interval
inmemSink := metrics.NewInmemSink(
1000000*time.Hour,
2000000*time.Hour)
sink := NewClusterMetricSink("test", inmemSink)
sink.MaxGaugeCardinality = 100
sink.GaugeInterval = 2 * time.Hour
// Create a report larger than the default limit
excessGauges := 20
values := makeLabels(sink.MaxGaugeCardinality + excessGauges)
rand.Shuffle(len(values), func(i, j int) {
values[i], values[j] = values[j], values[i]
})
// Advance time by 0.5% of duration
advance := time.Duration(int(0.005 * float32(sink.GaugeInterval)))
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
c.makeFunctionForValues(values, s, advance),
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
// This needs a ticker in order to do its thing,
// so run it in the background and we'll send the ticks
// from here.
done := make(chan struct{}, 1)
go func() {
p.collectAndFilterGauges()
close(done)
}()
sendTicker := s.waitForTicker(t)
numTicksSent := waitForDone(t, sendTicker.sender, done)
// 100 items, one delay after each batchSize (25), means that
// 3 ticks are consumed, so 3 or 4 must be sent.
expectedTicks := sink.MaxGaugeCardinality/batchSize - 1
if numTicksSent < expectedTicks || numTicksSent > expectedTicks+1 {
t.Errorf("Number of ticks = %v, expected %v.", numTicksSent, expectedTicks)
}
// If we start close to the end of an interval, metrics will
// be split across two buckets.
intervals := inmemSink.Data()
if len(intervals) > 1 {
t.Skip("Detected interval crossing.")
}
if len(intervals[0].Gauges) != sink.MaxGaugeCardinality {
t.Errorf("Found %v gauges, expected %v.",
len(intervals[0].Gauges),
sink.MaxGaugeCardinality)
}
minVal := float32(excessGauges)
for _, v := range intervals[0].Gauges {
if v.Value < minVal {
t.Errorf("Gauge %v with value %v should not have been included.", v.Labels, v.Value)
break
}
}
}
func TestGauge_MeasurementError(t *testing.T) {
s := startSimulatedTime()
c := newSimulatedCollector()
inmemSink := metrics.NewInmemSink(
1000000*time.Hour,
2000000*time.Hour)
sink := NewClusterMetricSink("test", inmemSink)
sink.MaxGaugeCardinality = 500
sink.GaugeInterval = 2 * time.Hour
// Create a small report so we don't have to deal with batching.
numGauges := 10
values := make([]GaugeLabelValues, numGauges)
for i := range values {
values[i].Labels = []Label{
{"test", "true"},
{"which", fmt.Sprintf("%v", i)},
}
values[i].Value = float32(i + 1)
}
f := func(ctx context.Context) ([]GaugeLabelValues, error) {
atomic.AddUint32(&c.numCalls, 1)
c.callBarrier <- c.numCalls
return values, errors.New("test error")
}
p, err := newGaugeCollectionProcessWithClock(
[]string{"example", "count"},
[]Label{{"gauge", "test"}},
f,
sink,
sink.GaugeInterval,
sink.MaxGaugeCardinality,
log.Default(),
s,
)
if err != nil {
t.Fatalf("Error creating collection process: %v", err)
}
p.collectAndFilterGauges()
// We should see no data in the sink
intervals := inmemSink.Data()
if len(intervals) > 1 {
t.Skip("Detected interval crossing.")
}
if len(intervals[0].Gauges) != 0 {
t.Errorf("Found %v gauges, expected %v.",
len(intervals[0].Gauges), 0)
}
}