open-vault/vault/sealunwrapper.go

181 lines
4.6 KiB
Go

// +build !enterprise
package vault
import (
"context"
"fmt"
"sync/atomic"
proto "github.com/golang/protobuf/proto"
log "github.com/hashicorp/go-hclog"
"github.com/hashicorp/vault/sdk/helper/locksutil"
"github.com/hashicorp/vault/sdk/physical"
)
// NewSealUnwrapper creates a new seal unwrapper
func NewSealUnwrapper(underlying physical.Backend, logger log.Logger) physical.Backend {
ret := &sealUnwrapper{
underlying: underlying,
logger: logger,
locks: locksutil.CreateLocks(),
allowUnwraps: new(uint32),
}
if underTxn, ok := underlying.(physical.Transactional); ok {
return &transactionalSealUnwrapper{
sealUnwrapper: ret,
Transactional: underTxn,
}
}
return ret
}
var _ physical.Backend = (*sealUnwrapper)(nil)
var _ physical.Transactional = (*transactionalSealUnwrapper)(nil)
type sealUnwrapper struct {
underlying physical.Backend
logger log.Logger
locks []*locksutil.LockEntry
allowUnwraps *uint32
}
// transactionalSealUnwrapper is a seal unwrapper that wraps a physical that is transactional
type transactionalSealUnwrapper struct {
*sealUnwrapper
physical.Transactional
}
func (d *sealUnwrapper) Put(ctx context.Context, entry *physical.Entry) error {
if entry == nil {
return nil
}
locksutil.LockForKey(d.locks, entry.Key).Lock()
defer locksutil.LockForKey(d.locks, entry.Key).Unlock()
return d.underlying.Put(ctx, entry)
}
func (d *sealUnwrapper) Get(ctx context.Context, key string) (*physical.Entry, error) {
entry, err := d.underlying.Get(ctx, key)
if err != nil {
return nil, err
}
if entry == nil {
return nil, nil
}
var performUnwrap bool
se := &physical.EncryptedBlobInfo{}
// If the value ends in our canary value, try to decode the bytes.
eLen := len(entry.Value)
if eLen > 0 && entry.Value[eLen-1] == 's' {
if err := proto.Unmarshal(entry.Value[:eLen-1], se); err == nil {
// We unmarshaled successfully which means we need to store it as a
// non-proto message
performUnwrap = true
}
}
if !performUnwrap {
return entry, nil
}
// It's actually encrypted and we can't read it
if se.Wrapped {
return nil, fmt.Errorf("cannot decode sealwrapped storage entry %q", entry.Key)
}
if atomic.LoadUint32(d.allowUnwraps) != 1 {
return &physical.Entry{
Key: entry.Key,
Value: se.Ciphertext,
}, nil
}
locksutil.LockForKey(d.locks, key).Lock()
defer locksutil.LockForKey(d.locks, key).Unlock()
// At this point we need to re-read and re-check
entry, err = d.underlying.Get(ctx, key)
if err != nil {
return nil, err
}
if entry == nil {
return nil, nil
}
performUnwrap = false
se = &physical.EncryptedBlobInfo{}
// If the value ends in our canary value, try to decode the bytes.
eLen = len(entry.Value)
if eLen > 0 && entry.Value[eLen-1] == 's' {
// We ignore an error because the canary is not a guarantee; if it
// doesn't decode, proceed normally
if err := proto.Unmarshal(entry.Value[:eLen-1], se); err == nil {
// We unmarshaled successfully which means we need to store it as a
// non-proto message
performUnwrap = true
}
}
if !performUnwrap {
return entry, nil
}
if se.Wrapped {
return nil, fmt.Errorf("cannot decode sealwrapped storage entry %q", entry.Key)
}
entry = &physical.Entry{
Key: entry.Key,
Value: se.Ciphertext,
}
if atomic.LoadUint32(d.allowUnwraps) != 1 {
return entry, nil
}
return entry, d.underlying.Put(ctx, entry)
}
func (d *sealUnwrapper) Delete(ctx context.Context, key string) error {
locksutil.LockForKey(d.locks, key).Lock()
defer locksutil.LockForKey(d.locks, key).Unlock()
return d.underlying.Delete(ctx, key)
}
func (d *sealUnwrapper) List(ctx context.Context, prefix string) ([]string, error) {
return d.underlying.List(ctx, prefix)
}
func (d *transactionalSealUnwrapper) Transaction(ctx context.Context, txns []*physical.TxnEntry) error {
// Collect keys that need to be locked
var keys []string
for _, curr := range txns {
keys = append(keys, curr.Entry.Key)
}
// Lock the keys
for _, l := range locksutil.LocksForKeys(d.locks, keys) {
l.Lock()
defer l.Unlock()
}
if err := d.Transactional.Transaction(ctx, txns); err != nil {
return err
}
return nil
}
// This should only run during preSeal which ensures that it can't be run
// concurrently and that it will be run only by the active node
func (d *sealUnwrapper) stopUnwraps() {
atomic.StoreUint32(d.allowUnwraps, 0)
}
func (d *sealUnwrapper) runUnwraps() {
// Allow key unwraps on key gets. This gets set only when running on the
// active node to prevent standbys from changing data underneath the
// primary
atomic.StoreUint32(d.allowUnwraps, 1)
}