open-vault/vault/core.go
2015-12-18 10:34:54 -05:00

1701 lines
47 KiB
Go

package vault
import (
"bytes"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"log"
"net/url"
"os"
"strings"
"sync"
"time"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/packet"
"github.com/armon/go-metrics"
"github.com/hashicorp/errwrap"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-uuid"
"github.com/hashicorp/vault/audit"
"github.com/hashicorp/vault/helper/mlock"
"github.com/hashicorp/vault/helper/pgpkeys"
"github.com/hashicorp/vault/logical"
"github.com/hashicorp/vault/physical"
"github.com/hashicorp/vault/shamir"
)
const (
// coreSealConfigPath is the path used to store our seal configuration.
// This value is stored in plaintext, since we must be able to read
// it even with the Vault sealed. This is required so that we know
// how many secret parts must be used to reconstruct the master key.
coreSealConfigPath = "core/seal-config"
// coreLockPath is the path used to acquire a coordinating lock
// for a highly-available deploy.
coreLockPath = "core/lock"
// coreLeaderPrefix is the prefix used for the UUID that contains
// the currently elected leader.
coreLeaderPrefix = "core/leader/"
// lockRetryInterval is the interval we re-attempt to acquire the
// HA lock if an error is encountered
lockRetryInterval = 10 * time.Second
// keyRotateCheckInterval is how often a standby checks for a key
// rotation taking place.
keyRotateCheckInterval = 30 * time.Second
// keyRotateGracePeriod is how long we allow an upgrade path
// for standby instances before we delete the upgrade keys
keyRotateGracePeriod = 2 * time.Minute
// leaderPrefixCleanDelay is how long to wait between deletions
// of orphaned leader keys, to prevent slamming the backend.
leaderPrefixCleanDelay = 200 * time.Millisecond
)
var (
// ErrSealed is returned if an operation is performed on
// a sealed barrier. No operation is expected to succeed before unsealing
ErrSealed = errors.New("Vault is sealed")
// ErrStandby is returned if an operation is performed on
// a standby Vault. No operation is expected to succeed until active.
ErrStandby = errors.New("Vault is in standby mode")
// ErrAlreadyInit is returned if the core is already
// initialized. This prevents a re-initialization.
ErrAlreadyInit = errors.New("Vault is already initialized")
// ErrNotInit is returned if a non-initialized barrier
// is attempted to be unsealed.
ErrNotInit = errors.New("Vault is not initialized")
// ErrInternalError is returned when we don't want to leak
// any information about an internal error
ErrInternalError = errors.New("internal error")
// ErrHANotEnabled is returned if the operation only makes sense
// in an HA setting
ErrHANotEnabled = errors.New("Vault is not configured for highly-available mode")
)
// SealConfig is used to describe the seal configuration
type SealConfig struct {
// SecretShares is the number of shares the secret is
// split into. This is the N value of Shamir.
SecretShares int `json:"secret_shares"`
// PGPKeys is the array of public PGP keys used,
// if requested, to encrypt the output unseal tokens. If
// provided, it sets the value of SecretShares. Ordering
// is important.
PGPKeys []string `json:"-"`
// SecretThreshold is the number of parts required
// to open the vault. This is the T value of Shamir
SecretThreshold int `json:"secret_threshold"`
}
// Validate is used to sanity check the seal configuration
func (s *SealConfig) Validate() error {
if s.SecretShares < 1 {
return fmt.Errorf("secret shares must be at least one")
}
if s.SecretThreshold < 1 {
return fmt.Errorf("secret threshold must be at least one")
}
if s.SecretShares > 1 && s.SecretThreshold == 1 {
return fmt.Errorf("secret threshold must be greater than one for multiple shares")
}
if s.SecretShares > 255 {
return fmt.Errorf("secret shares must be less than 256")
}
if s.SecretThreshold > 255 {
return fmt.Errorf("secret threshold must be less than 256")
}
if s.SecretThreshold > s.SecretShares {
return fmt.Errorf("secret threshold cannot be larger than secret shares")
}
if len(s.PGPKeys) > 0 && len(s.PGPKeys) != s.SecretShares {
return fmt.Errorf("count mismatch between number of provided PGP keys and number of shares")
}
if len(s.PGPKeys) > 0 {
for _, keystring := range s.PGPKeys {
data, err := base64.StdEncoding.DecodeString(keystring)
if err != nil {
return fmt.Errorf("Error decoding given PGP key: %s", err)
}
_, err = openpgp.ReadEntity(packet.NewReader(bytes.NewBuffer(data)))
if err != nil {
return fmt.Errorf("Error parsing given PGP key: %s", err)
}
}
}
return nil
}
// InitResult is used to provide the key parts back after
// they are generated as part of the initialization.
type InitResult struct {
SecretShares [][]byte
RootToken string
}
// RekeyResult is used to provide the key parts back after
// they are generated as part of the rekey.
type RekeyResult struct {
SecretShares [][]byte
}
// ErrInvalidKey is returned if there is an error with a
// provided unseal key.
type ErrInvalidKey struct {
Reason string
}
func (e *ErrInvalidKey) Error() string {
return fmt.Sprintf("invalid key: %v", e.Reason)
}
// Core is used as the central manager of Vault activity. It is the primary point of
// interface for API handlers and is responsible for managing the logical and physical
// backends, router, security barrier, and audit trails.
type Core struct {
// HABackend may be available depending on the physical backend
ha physical.HABackend
// AdvertiseAddr is the address we advertise as leader if held
advertiseAddr string
// physical backend is the un-trusted backend with durable data
physical physical.Backend
// barrier is the security barrier wrapping the physical backend
barrier SecurityBarrier
// router is responsible for managing the mount points for logical backends.
router *Router
// logicalBackends is the mapping of backends to use for this core
logicalBackends map[string]logical.Factory
// credentialBackends is the mapping of backends to use for this core
credentialBackends map[string]logical.Factory
// auditBackends is the mapping of backends to use for this core
auditBackends map[string]audit.Factory
// stateLock protects mutable state
stateLock sync.RWMutex
sealed bool
standby bool
standbyDoneCh chan struct{}
standbyStopCh chan struct{}
// unlockParts has the keys provided to Unseal until
// the threshold number of parts is available.
unlockParts [][]byte
// rekeyProgress holds the shares we have until we reach enough
// to verify the master key.
rekeyConfig *SealConfig
rekeyProgress [][]byte
rekeyLock sync.Mutex
// mounts is loaded after unseal since it is a protected
// configuration
mounts *MountTable
// mountsLock is used to ensure that the mounts table does not
// change underneath a calling function
mountsLock sync.RWMutex
// auth is loaded after unseal since it is a protected
// configuration
auth *MountTable
// authLock is used to ensure that the auth table does not
// change underneath a calling function
authLock sync.RWMutex
// audit is loaded after unseal since it is a protected
// configuration
audit *MountTable
// auditLock is used to ensure that the audit table does not
// change underneath a calling function
auditLock sync.RWMutex
// auditBroker is used to ingest the audit events and fan
// out into the configured audit backends
auditBroker *AuditBroker
// systemBarrierView is the barrier view for the system backend
systemBarrierView *BarrierView
// expiration manager is used for managing LeaseIDs,
// renewal, expiration and revocation
expiration *ExpirationManager
// rollback manager is used to run rollbacks periodically
rollback *RollbackManager
// policy store is used to manage named ACL policies
policyStore *PolicyStore
// token store is used to manage authentication tokens
tokenStore *TokenStore
// metricsCh is used to stop the metrics streaming
metricsCh chan struct{}
// metricsMutex is used to prevent a race condition between
// metrics emission and sealing leading to a nil pointer
metricsMutex sync.Mutex
defaultLeaseTTL time.Duration
maxLeaseTTL time.Duration
logger *log.Logger
}
// CoreConfig is used to parameterize a core
type CoreConfig struct {
LogicalBackends map[string]logical.Factory
CredentialBackends map[string]logical.Factory
AuditBackends map[string]audit.Factory
Physical physical.Backend
HAPhysical physical.HABackend // May be nil, which disables HA operations
Logger *log.Logger
DisableCache bool // Disables the LRU cache on the physical backend
DisableMlock bool // Disables mlock syscall
CacheSize int // Custom cache size of zero for default
AdvertiseAddr string // Set as the leader address for HA
DefaultLeaseTTL time.Duration
MaxLeaseTTL time.Duration
}
// NewCore is used to construct a new core
func NewCore(conf *CoreConfig) (*Core, error) {
if conf.HAPhysical != nil && conf.AdvertiseAddr == "" {
return nil, fmt.Errorf("missing advertisement address")
}
if conf.DefaultLeaseTTL == 0 {
conf.DefaultLeaseTTL = defaultLeaseTTL
}
if conf.MaxLeaseTTL == 0 {
conf.MaxLeaseTTL = maxLeaseTTL
}
if conf.DefaultLeaseTTL > conf.MaxLeaseTTL {
return nil, fmt.Errorf("cannot have DefaultLeaseTTL larger than MaxLeaseTTL")
}
// Validate the advertise addr if its given to us
if conf.AdvertiseAddr != "" {
u, err := url.Parse(conf.AdvertiseAddr)
if err != nil {
return nil, fmt.Errorf("advertisement address is not valid url: %s", err)
}
if u.Scheme == "" {
return nil, fmt.Errorf("advertisement address must include scheme (ex. 'http')")
}
}
// Wrap the backend in a cache unless disabled
if !conf.DisableCache {
_, isCache := conf.Physical.(*physical.Cache)
_, isInmem := conf.Physical.(*physical.InmemBackend)
if !isCache && !isInmem {
cache := physical.NewCache(conf.Physical, conf.CacheSize)
conf.Physical = cache
}
}
if !conf.DisableMlock {
// Ensure our memory usage is locked into physical RAM
if err := mlock.LockMemory(); err != nil {
return nil, fmt.Errorf(
"Failed to lock memory: %v\n\n"+
"This usually means that the mlock syscall is not available.\n"+
"Vault uses mlock to prevent memory from being swapped to\n"+
"disk. This requires root privileges as well as a machine\n"+
"that supports mlock. Please enable mlock on your system or\n"+
"disable Vault from using it. To disable Vault from using it,\n"+
"set the `disable_mlock` configuration option in your configuration\n"+
"file.",
err)
}
}
// Construct a new AES-GCM barrier
barrier, err := NewAESGCMBarrier(conf.Physical)
if err != nil {
return nil, fmt.Errorf("barrier setup failed: %v", err)
}
// Make a default logger if not provided
if conf.Logger == nil {
conf.Logger = log.New(os.Stderr, "", log.LstdFlags)
}
// Setup the core
c := &Core{
ha: conf.HAPhysical,
advertiseAddr: conf.AdvertiseAddr,
physical: conf.Physical,
barrier: barrier,
router: NewRouter(),
sealed: true,
standby: true,
logger: conf.Logger,
defaultLeaseTTL: conf.DefaultLeaseTTL,
maxLeaseTTL: conf.MaxLeaseTTL,
}
// Setup the backends
logicalBackends := make(map[string]logical.Factory)
for k, f := range conf.LogicalBackends {
logicalBackends[k] = f
}
_, ok := logicalBackends["generic"]
if !ok {
logicalBackends["generic"] = PassthroughBackendFactory
}
logicalBackends["cubbyhole"] = CubbyholeBackendFactory
logicalBackends["system"] = func(config *logical.BackendConfig) (logical.Backend, error) {
return NewSystemBackend(c, config), nil
}
c.logicalBackends = logicalBackends
credentialBackends := make(map[string]logical.Factory)
for k, f := range conf.CredentialBackends {
credentialBackends[k] = f
}
credentialBackends["token"] = func(config *logical.BackendConfig) (logical.Backend, error) {
return NewTokenStore(c, config)
}
c.credentialBackends = credentialBackends
auditBackends := make(map[string]audit.Factory)
for k, f := range conf.AuditBackends {
auditBackends[k] = f
}
c.auditBackends = auditBackends
return c, nil
}
// Shutdown is invoked when the Vault instance is about to be terminated. It
// should not be accessible as part of an API call as it will cause an availability
// problem. It is only used to gracefully quit in the case of HA so that failover
// happens as quickly as possible.
func (c *Core) Shutdown() error {
c.stateLock.Lock()
defer c.stateLock.Unlock()
if c.sealed {
return nil
}
// Seal the Vault, causes a leader stepdown
return c.sealInternal()
}
// HandleRequest is used to handle a new incoming request
func (c *Core) HandleRequest(req *logical.Request) (resp *logical.Response, err error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
var auth *logical.Auth
if c.router.LoginPath(req.Path) {
resp, auth, err = c.handleLoginRequest(req)
} else {
resp, auth, err = c.handleRequest(req)
}
// Ensure we don't leak internal data
if resp != nil {
if resp.Secret != nil {
resp.Secret.InternalData = nil
}
if resp.Auth != nil {
resp.Auth.InternalData = nil
}
}
// Create an audit trail of the response
if err := c.auditBroker.LogResponse(auth, req, resp, err); err != nil {
c.logger.Printf("[ERR] core: failed to audit response (request path: %s): %v",
req.Path, err)
return nil, ErrInternalError
}
return
}
func (c *Core) handleRequest(req *logical.Request) (retResp *logical.Response, retAuth *logical.Auth, retErr error) {
defer metrics.MeasureSince([]string{"core", "handle_request"}, time.Now())
// Validate the token
auth, te, err := c.checkToken(req.Operation, req.Path, req.ClientToken)
if te != nil {
defer func() {
// Attempt to use the token (decrement num_uses)
// If a secret was generated and num_uses is currently 1, it will be
// immediately revoked; in that case, don't return the leased
// credentials as they are now invalid.
if retResp != nil &&
te != nil && te.NumUses == 1 &&
retResp.Secret != nil &&
// Some backends return a TTL even without a Lease ID
retResp.Secret.LeaseID != "" {
retResp = logical.ErrorResponse("Secret cannot be returned; token had one use left, so leased credentials were immediately revoked.")
}
if err := c.tokenStore.UseToken(te); err != nil {
c.logger.Printf("[ERR] core: failed to use token: %v", err)
retResp = nil
retAuth = nil
retErr = ErrInternalError
}
}()
}
if err != nil {
// If it is an internal error we return that, otherwise we
// return invalid request so that the status codes can be correct
var errType error
switch err {
case ErrInternalError, logical.ErrPermissionDenied:
errType = err
default:
errType = logical.ErrInvalidRequest
}
if err := c.auditBroker.LogRequest(auth, req, err); err != nil {
c.logger.Printf("[ERR] core: failed to audit request with path (%s): %v",
req.Path, err)
}
return logical.ErrorResponse(err.Error()), nil, errType
}
// Attach the display name
req.DisplayName = auth.DisplayName
// Create an audit trail of the request
if err := c.auditBroker.LogRequest(auth, req, nil); err != nil {
c.logger.Printf("[ERR] core: failed to audit request with path (%s): %v",
req.Path, err)
return nil, auth, ErrInternalError
}
// Route the request
resp, err := c.router.Route(req)
// If there is a secret, we must register it with the expiration manager.
// We exclude renewal of a lease, since it does not need to be re-registered
if resp != nil && resp.Secret != nil && !strings.HasPrefix(req.Path, "sys/renew/") {
// Get the SystemView for the mount
sysView := c.router.MatchingSystemView(req.Path)
if sysView == nil {
c.logger.Println("[ERR] core: unable to retrieve system view from router")
return nil, auth, ErrInternalError
}
// Apply the default lease if none given
if resp.Secret.TTL == 0 {
resp.Secret.TTL = sysView.DefaultLeaseTTL()
}
// Limit the lease duration
maxTTL := sysView.MaxLeaseTTL()
if resp.Secret.TTL > maxTTL {
resp.Secret.TTL = maxTTL
}
// Generic mounts should return the TTL but not register
// for a lease as this provides a massive slowdown
registerLease := true
matchingBackend := c.router.MatchingBackend(req.Path)
if matchingBackend == nil {
c.logger.Println("[ERR] core: unable to retrieve generic backend from router")
return nil, auth, ErrInternalError
}
if ptbe, ok := matchingBackend.(*PassthroughBackend); ok {
if !ptbe.GeneratesLeases() {
registerLease = false
resp.Secret.Renewable = false
}
}
if registerLease {
leaseID, err := c.expiration.Register(req, resp)
if err != nil {
c.logger.Printf(
"[ERR] core: failed to register lease "+
"(request path: %s): %v", req.Path, err)
return nil, auth, ErrInternalError
}
resp.Secret.LeaseID = leaseID
}
}
// Only the token store is allowed to return an auth block, for any
// other request this is an internal error. We exclude renewal of a token,
// since it does not need to be re-registered
if resp != nil && resp.Auth != nil && !strings.HasPrefix(req.Path, "auth/token/renew/") {
if !strings.HasPrefix(req.Path, "auth/token/") {
c.logger.Printf(
"[ERR] core: unexpected Auth response for non-token backend "+
"(request path: %s)", req.Path)
return nil, auth, ErrInternalError
}
sysView := c.router.MatchingSystemView(req.Path)
if sysView == nil {
c.logger.Println("[ERR] core: unable to retrieve system view from router")
return nil, auth, ErrInternalError
}
// Apply the default lease if none given
if resp.Auth.TTL == 0 && !strListContains(resp.Auth.Policies, "root") {
resp.Auth.TTL = sysView.DefaultLeaseTTL()
}
// Limit the lease duration
maxTTL := sysView.MaxLeaseTTL()
if resp.Auth.TTL > maxTTL {
resp.Auth.TTL = maxTTL
}
// Register with the expiration manager
if err := c.expiration.RegisterAuth(req.Path, resp.Auth); err != nil {
c.logger.Printf("[ERR] core: failed to register token lease "+
"(request path: %s): %v", req.Path, err)
return nil, auth, ErrInternalError
}
}
// Return the response and error
return resp, auth, err
}
// handleLoginRequest is used to handle a login request, which is an
// unauthenticated request to the backend.
func (c *Core) handleLoginRequest(req *logical.Request) (*logical.Response, *logical.Auth, error) {
defer metrics.MeasureSince([]string{"core", "handle_login_request"}, time.Now())
// Create an audit trail of the request, auth is not available on login requests
if err := c.auditBroker.LogRequest(nil, req, nil); err != nil {
c.logger.Printf("[ERR] core: failed to audit request with path %s: %v",
req.Path, err)
return nil, nil, ErrInternalError
}
// Route the request
resp, err := c.router.Route(req)
// A login request should never return a secret!
if resp != nil && resp.Secret != nil {
c.logger.Printf("[ERR] core: unexpected Secret response for login path"+
"(request path: %s)", req.Path)
return nil, nil, ErrInternalError
}
// If the response generated an authentication, then generate the token
var auth *logical.Auth
if resp != nil && resp.Auth != nil {
auth = resp.Auth
// Determine the source of the login
source := c.router.MatchingMount(req.Path)
source = strings.TrimPrefix(source, credentialRoutePrefix)
source = strings.Replace(source, "/", "-", -1)
// Prepend the source to the display name
auth.DisplayName = strings.TrimSuffix(source+auth.DisplayName, "-")
sysView := c.router.MatchingSystemView(req.Path)
if sysView == nil {
c.logger.Printf("[ERR] core: unable to look up sys view for login path"+
"(request path: %s)", req.Path)
return nil, nil, ErrInternalError
}
// Set the default lease if non-provided, root tokens are exempt
if auth.TTL == 0 && !strListContains(auth.Policies, "root") {
auth.TTL = sysView.DefaultLeaseTTL()
}
// Limit the lease duration
if auth.TTL > sysView.MaxLeaseTTL() {
auth.TTL = sysView.MaxLeaseTTL()
}
// Generate a token
te := TokenEntry{
Path: req.Path,
Policies: auth.Policies,
Meta: auth.Metadata,
DisplayName: auth.DisplayName,
CreationTime: time.Now().Unix(),
TTL: auth.TTL,
}
if !strListSubset(te.Policies, []string{"root"}) {
te.Policies = append(te.Policies, "default")
}
if err := c.tokenStore.create(&te); err != nil {
c.logger.Printf("[ERR] core: failed to create token: %v", err)
return nil, auth, ErrInternalError
}
// Populate the client token
auth.ClientToken = te.ID
// Register with the expiration manager
if err := c.expiration.RegisterAuth(req.Path, auth); err != nil {
c.logger.Printf("[ERR] core: failed to register token lease "+
"(request path: %s): %v", req.Path, err)
return nil, auth, ErrInternalError
}
// Attach the display name, might be used by audit backends
req.DisplayName = auth.DisplayName
}
return resp, auth, err
}
func (c *Core) checkToken(
op logical.Operation, path string, token string) (*logical.Auth, *TokenEntry, error) {
defer metrics.MeasureSince([]string{"core", "check_token"}, time.Now())
// Ensure there is a client token
if token == "" {
return nil, nil, fmt.Errorf("missing client token")
}
if c.tokenStore == nil {
c.logger.Printf("[ERR] core: token store is unavailable")
return nil, nil, ErrInternalError
}
// Resolve the token policy
te, err := c.tokenStore.Lookup(token)
if err != nil {
c.logger.Printf("[ERR] core: failed to lookup token: %v", err)
return nil, nil, ErrInternalError
}
// Ensure the token is valid
if te == nil {
return nil, nil, logical.ErrPermissionDenied
}
// Construct the corresponding ACL object
acl, err := c.policyStore.ACL(te.Policies...)
if err != nil {
c.logger.Printf("[ERR] core: failed to construct ACL: %v", err)
return nil, nil, ErrInternalError
}
// Check if this is a root protected path
if c.router.RootPath(path) && !acl.RootPrivilege(path) {
return nil, nil, logical.ErrPermissionDenied
}
// Check the standard non-root ACLs
if !acl.AllowOperation(op, path) {
return nil, nil, logical.ErrPermissionDenied
}
// Create the auth response
auth := &logical.Auth{
ClientToken: token,
Policies: te.Policies,
Metadata: te.Meta,
DisplayName: te.DisplayName,
}
return auth, te, nil
}
// Initialized checks if the Vault is already initialized
func (c *Core) Initialized() (bool, error) {
// Check the barrier first
init, err := c.barrier.Initialized()
if err != nil {
c.logger.Printf("[ERR] core: barrier init check failed: %v", err)
return false, err
}
if !init {
return false, nil
}
if !init {
c.logger.Printf("[INFO] core: security barrier not initialized")
return false, nil
}
// Verify the seal configuration
sealConf, err := c.SealConfig()
if err != nil {
return false, err
}
if sealConf == nil {
return false, nil
}
return true, nil
}
// Initialize is used to initialize the Vault with the given
// configurations.
func (c *Core) Initialize(config *SealConfig) (*InitResult, error) {
// Check if the seal configuraiton is valid
if err := config.Validate(); err != nil {
c.logger.Printf("[ERR] core: invalid seal configuration: %v", err)
return nil, fmt.Errorf("invalid seal configuration: %v", err)
}
// Avoid an initialization race
c.stateLock.Lock()
defer c.stateLock.Unlock()
// Check if we are initialized
init, err := c.Initialized()
if err != nil {
return nil, err
}
if init {
return nil, ErrAlreadyInit
}
// Encode the seal configuration
buf, err := json.Marshal(config)
if err != nil {
return nil, fmt.Errorf("failed to encode seal configuration: %v", err)
}
// Store the seal configuration
pe := &physical.Entry{
Key: coreSealConfigPath,
Value: buf,
}
if err := c.physical.Put(pe); err != nil {
c.logger.Printf("[ERR] core: failed to write seal configuration: %v", err)
return nil, fmt.Errorf("failed to write seal configuration: %v", err)
}
// Generate a master key
masterKey, err := c.barrier.GenerateKey()
if err != nil {
c.logger.Printf("[ERR] core: failed to generate master key: %v", err)
return nil, fmt.Errorf("master key generation failed: %v", err)
}
// Return the master key if only a single key part is used
results := new(InitResult)
if config.SecretShares == 1 {
results.SecretShares = append(results.SecretShares, masterKey)
} else {
// Split the master key using the Shamir algorithm
shares, err := shamir.Split(masterKey, config.SecretShares, config.SecretThreshold)
if err != nil {
c.logger.Printf("[ERR] core: failed to generate shares: %v", err)
return nil, fmt.Errorf("failed to generate shares: %v", err)
}
results.SecretShares = shares
}
if len(config.PGPKeys) > 0 {
encryptedShares, err := pgpkeys.EncryptShares(results.SecretShares, config.PGPKeys)
if err != nil {
return nil, err
}
results.SecretShares = encryptedShares
}
// Initialize the barrier
if err := c.barrier.Initialize(masterKey); err != nil {
c.logger.Printf("[ERR] core: failed to initialize barrier: %v", err)
return nil, fmt.Errorf("failed to initialize barrier: %v", err)
}
c.logger.Printf("[INFO] core: security barrier initialized (shares: %d, threshold %d)",
config.SecretShares, config.SecretThreshold)
// Unseal the barrier
if err := c.barrier.Unseal(masterKey); err != nil {
c.logger.Printf("[ERR] core: failed to unseal barrier: %v", err)
return nil, fmt.Errorf("failed to unseal barrier: %v", err)
}
// Ensure the barrier is re-sealed
defer func() {
if err := c.barrier.Seal(); err != nil {
c.logger.Printf("[ERR] core: failed to seal barrier: %v", err)
}
}()
// Perform initial setup
if err := c.postUnseal(); err != nil {
c.logger.Printf("[ERR] core: post-unseal setup failed: %v", err)
return nil, err
}
// Generate a new root token
rootToken, err := c.tokenStore.rootToken()
if err != nil {
c.logger.Printf("[ERR] core: root token generation failed: %v", err)
return nil, err
}
results.RootToken = rootToken.ID
c.logger.Printf("[INFO] core: root token generated")
// Prepare to re-seal
if err := c.preSeal(); err != nil {
c.logger.Printf("[ERR] core: pre-seal teardown failed: %v", err)
return nil, err
}
return results, nil
}
// Sealed checks if the Vault is current sealed
func (c *Core) Sealed() (bool, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
return c.sealed, nil
}
// Standby checks if the Vault is in standby mode
func (c *Core) Standby() (bool, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
return c.standby, nil
}
// Leader is used to get the current active leader
func (c *Core) Leader() (bool, string, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
// Check if HA enabled
if c.ha == nil {
return false, "", ErrHANotEnabled
}
// Check if sealed
if c.sealed {
return false, "", ErrSealed
}
// Check if we are the leader
if !c.standby {
return true, c.advertiseAddr, nil
}
// Initialize a lock
lock, err := c.ha.LockWith(coreLockPath, "read")
if err != nil {
return false, "", err
}
// Read the value
held, value, err := lock.Value()
if err != nil {
return false, "", err
}
if !held {
return false, "", nil
}
// Value is the UUID of the leader, fetch the key
key := coreLeaderPrefix + value
entry, err := c.barrier.Get(key)
if err != nil {
return false, "", err
}
if entry == nil {
return false, "", nil
}
// Leader address is in the entry
return false, string(entry.Value), nil
}
// SealConfiguration is used to return information
// about the configuration of the Vault and it's current
// status.
func (c *Core) SealConfig() (*SealConfig, error) {
// Fetch the core configuration
pe, err := c.physical.Get(coreSealConfigPath)
if err != nil {
c.logger.Printf("[ERR] core: failed to read seal configuration: %v", err)
return nil, fmt.Errorf("failed to check seal configuration: %v", err)
}
// If the seal configuration is missing, we are not initialized
if pe == nil {
c.logger.Printf("[INFO] core: seal configuration missing, not initialized")
return nil, nil
}
// Decode the barrier entry
var conf SealConfig
if err := json.Unmarshal(pe.Value, &conf); err != nil {
c.logger.Printf("[ERR] core: failed to decode seal configuration: %v", err)
return nil, fmt.Errorf("failed to decode seal configuration: %v", err)
}
// Check for a valid seal configuration
if err := conf.Validate(); err != nil {
c.logger.Printf("[ERR] core: invalid seal configuration: %v", err)
return nil, fmt.Errorf("seal validation failed: %v", err)
}
return &conf, nil
}
// SecretProgress returns the number of keys provided so far
func (c *Core) SecretProgress() int {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
return len(c.unlockParts)
}
// ResetUnsealProcess removes the current unlock parts from memory, to reset
// the unsealing process
func (c *Core) ResetUnsealProcess() {
c.stateLock.Lock()
defer c.stateLock.Unlock()
if !c.sealed {
return
}
c.unlockParts = nil
}
// Unseal is used to provide one of the key parts to unseal the Vault.
//
// They key given as a parameter will automatically be zerod after
// this method is done with it. If you want to keep the key around, a copy
// should be made.
func (c *Core) Unseal(key []byte) (bool, error) {
defer metrics.MeasureSince([]string{"core", "unseal"}, time.Now())
// Verify the key length
min, max := c.barrier.KeyLength()
max += shamir.ShareOverhead
if len(key) < min {
return false, &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)}
}
if len(key) > max {
return false, &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)}
}
// Get the seal configuration
config, err := c.SealConfig()
if err != nil {
return false, err
}
// Ensure the barrier is initialized
if config == nil {
return false, ErrNotInit
}
c.stateLock.Lock()
defer c.stateLock.Unlock()
// Check if already unsealed
if !c.sealed {
return true, nil
}
// Check if we already have this piece
for _, existing := range c.unlockParts {
if bytes.Equal(existing, key) {
return false, nil
}
}
// Store this key
c.unlockParts = append(c.unlockParts, key)
// Check if we don't have enough keys to unlock
if len(c.unlockParts) < config.SecretThreshold {
c.logger.Printf("[DEBUG] core: cannot unseal, have %d of %d keys",
len(c.unlockParts), config.SecretThreshold)
return false, nil
}
// Recover the master key
var masterKey []byte
if config.SecretThreshold == 1 {
masterKey = c.unlockParts[0]
c.unlockParts = nil
} else {
masterKey, err = shamir.Combine(c.unlockParts)
c.unlockParts = nil
if err != nil {
return false, fmt.Errorf("failed to compute master key: %v", err)
}
}
defer memzero(masterKey)
// Attempt to unlock
if err := c.barrier.Unseal(masterKey); err != nil {
return false, err
}
c.logger.Printf("[INFO] core: vault is unsealed")
// Do post-unseal setup if HA is not enabled
if c.ha == nil {
if err := c.postUnseal(); err != nil {
c.logger.Printf("[ERR] core: post-unseal setup failed: %v", err)
c.barrier.Seal()
c.logger.Printf("[WARN] core: vault is sealed")
return false, err
}
c.standby = false
} else {
// Go to standby mode, wait until we are active to unseal
c.standbyDoneCh = make(chan struct{})
c.standbyStopCh = make(chan struct{})
go c.runStandby(c.standbyDoneCh, c.standbyStopCh)
}
// Success!
c.sealed = false
return true, nil
}
// Seal is used to re-seal the Vault. This requires the Vault to
// be unsealed again to perform any further operations.
func (c *Core) Seal(token string) (retErr error) {
defer metrics.MeasureSince([]string{"core", "seal"}, time.Now())
c.stateLock.Lock()
defer c.stateLock.Unlock()
if c.sealed {
return nil
}
// Validate the token is a root token
_, te, err := c.checkToken(logical.WriteOperation, "sys/seal", token)
if te != nil {
// Attempt to use the token (decrement num_uses)
if err := c.tokenStore.UseToken(te); err != nil {
c.logger.Printf("[ERR] core: failed to use token: %v", err)
retErr = ErrInternalError
}
}
if err != nil {
return err
}
// Seal the Vault
err = c.sealInternal()
if err == nil && retErr == ErrInternalError {
c.logger.Printf("[ERR] core: core is successfully sealed but another error occurred during the operation")
} else {
retErr = err
}
return
}
// sealInternal is an internal method used to seal the vault.
// It does not do any authorization checking. The stateLock must
// be held prior to calling.
func (c *Core) sealInternal() error {
// Enable that we are sealed to prevent furthur transactions
c.sealed = true
// Do pre-seal teardown if HA is not enabled
if c.ha == nil {
if err := c.preSeal(); err != nil {
c.logger.Printf("[ERR] core: pre-seal teardown failed: %v", err)
return fmt.Errorf("internal error")
}
} else {
// Signal the standby goroutine to shutdown, wait for completion
close(c.standbyStopCh)
// Release the lock while we wait to avoid deadlocking
c.stateLock.Unlock()
<-c.standbyDoneCh
c.stateLock.Lock()
}
if err := c.barrier.Seal(); err != nil {
return err
}
c.logger.Printf("[INFO] core: vault is sealed")
return nil
}
// RekeyProgress is used to return the rekey progress (num shares)
func (c *Core) RekeyProgress() (int, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return 0, ErrSealed
}
if c.standby {
return 0, ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
return len(c.rekeyProgress), nil
}
// RekeyConfig is used to read the rekey configuration
func (c *Core) RekeyConfig() (*SealConfig, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Copy the seal config if any
var conf *SealConfig
if c.rekeyConfig != nil {
conf = new(SealConfig)
*conf = *c.rekeyConfig
}
return conf, nil
}
// RekeyInit is used to initialize the rekey settings
func (c *Core) RekeyInit(config *SealConfig) error {
// Check if the seal configuraiton is valid
if err := config.Validate(); err != nil {
c.logger.Printf("[ERR] core: invalid rekey seal configuration: %v", err)
return fmt.Errorf("invalid rekey seal configuration: %v", err)
}
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
// Prevent multiple concurrent re-keys
if c.rekeyConfig != nil {
return fmt.Errorf("rekey already in progress")
}
// Copy the configuration
c.rekeyConfig = new(SealConfig)
*c.rekeyConfig = *config
c.logger.Printf("[INFO] core: rekey initialized (shares: %d, threshold: %d)",
c.rekeyConfig.SecretShares, c.rekeyConfig.SecretThreshold)
return nil
}
// RekeyUpdate is used to provide a new key part
func (c *Core) RekeyUpdate(key []byte) (*RekeyResult, error) {
// Verify the key length
min, max := c.barrier.KeyLength()
max += shamir.ShareOverhead
if len(key) < min {
return nil, &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)}
}
if len(key) > max {
return nil, &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)}
}
// Get the seal configuration
config, err := c.SealConfig()
if err != nil {
return nil, err
}
// Ensure the barrier is initialized
if config == nil {
return nil, ErrNotInit
}
// Ensure we are already unsealed
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Ensure a rekey is in progress
if c.rekeyConfig == nil {
return nil, fmt.Errorf("no rekey in progress")
}
// Check if we already have this piece
for _, existing := range c.rekeyProgress {
if bytes.Equal(existing, key) {
return nil, nil
}
}
// Store this key
c.rekeyProgress = append(c.rekeyProgress, key)
// Check if we don't have enough keys to unlock
if len(c.rekeyProgress) < config.SecretThreshold {
c.logger.Printf("[DEBUG] core: cannot rekey, have %d of %d keys",
len(c.rekeyProgress), config.SecretThreshold)
return nil, nil
}
// Recover the master key
var masterKey []byte
if config.SecretThreshold == 1 {
masterKey = c.rekeyProgress[0]
c.rekeyProgress = nil
} else {
masterKey, err = shamir.Combine(c.rekeyProgress)
c.rekeyProgress = nil
if err != nil {
return nil, fmt.Errorf("failed to compute master key: %v", err)
}
}
// Verify the master key
if err := c.barrier.VerifyMaster(masterKey); err != nil {
c.logger.Printf("[ERR] core: rekey aborted, master key verification failed: %v", err)
return nil, err
}
// Generate a new master key
newMasterKey, err := c.barrier.GenerateKey()
if err != nil {
c.logger.Printf("[ERR] core: failed to generate master key: %v", err)
return nil, fmt.Errorf("master key generation failed: %v", err)
}
// Return the master key if only a single key part is used
results := new(RekeyResult)
if c.rekeyConfig.SecretShares == 1 {
results.SecretShares = append(results.SecretShares, newMasterKey)
} else {
// Split the master key using the Shamir algorithm
shares, err := shamir.Split(newMasterKey, c.rekeyConfig.SecretShares, c.rekeyConfig.SecretThreshold)
if err != nil {
c.logger.Printf("[ERR] core: failed to generate shares: %v", err)
return nil, fmt.Errorf("failed to generate shares: %v", err)
}
results.SecretShares = shares
}
if len(c.rekeyConfig.PGPKeys) > 0 {
encryptedShares, err := pgpkeys.EncryptShares(results.SecretShares, c.rekeyConfig.PGPKeys)
if err != nil {
return nil, err
}
results.SecretShares = encryptedShares
}
// Encode the seal configuration
buf, err := json.Marshal(c.rekeyConfig)
if err != nil {
return nil, fmt.Errorf("failed to encode seal configuration: %v", err)
}
// Rekey the barrier
if err := c.barrier.Rekey(newMasterKey); err != nil {
c.logger.Printf("[ERR] core: failed to rekey barrier: %v", err)
return nil, fmt.Errorf("failed to rekey barrier: %v", err)
}
c.logger.Printf("[INFO] core: security barrier rekeyed (shares: %d, threshold: %d)",
c.rekeyConfig.SecretShares, c.rekeyConfig.SecretThreshold)
// Store the seal configuration
pe := &physical.Entry{
Key: coreSealConfigPath,
Value: buf,
}
if err := c.physical.Put(pe); err != nil {
c.logger.Printf("[ERR] core: failed to update seal configuration: %v", err)
return nil, fmt.Errorf("failed to update seal configuration: %v", err)
}
// Done!
c.rekeyProgress = nil
c.rekeyConfig = nil
return results, nil
}
// RekeyCancel is used to cancel an inprogress rekey
func (c *Core) RekeyCancel() error {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
// Clear any progress or config
c.rekeyConfig = nil
c.rekeyProgress = nil
return nil
}
// postUnseal is invoked after the barrier is unsealed, but before
// allowing any user operations. This allows us to setup any state that
// requires the Vault to be unsealed such as mount tables, logical backends,
// credential stores, etc.
func (c *Core) postUnseal() (retErr error) {
defer metrics.MeasureSince([]string{"core", "post_unseal"}, time.Now())
defer func() {
if retErr != nil {
c.preSeal()
}
}()
c.logger.Printf("[INFO] core: post-unseal setup starting")
if cache, ok := c.physical.(*physical.Cache); ok {
cache.Purge()
}
// HA mode requires us to handle keyring rotation and rekeying
if c.ha != nil {
if err := c.checkKeyUpgrades(); err != nil {
return err
}
if err := c.barrier.ReloadMasterKey(); err != nil {
return err
}
if err := c.barrier.ReloadKeyring(); err != nil {
return err
}
if err := c.scheduleUpgradeCleanup(); err != nil {
return err
}
}
if err := c.loadMounts(); err != nil {
return err
}
if err := c.setupMounts(); err != nil {
return err
}
if err := c.startRollback(); err != nil {
return err
}
if err := c.setupPolicyStore(); err != nil {
return err
}
if err := c.loadCredentials(); err != nil {
return err
}
if err := c.setupCredentials(); err != nil {
return err
}
if err := c.setupExpiration(); err != nil {
return err
}
if err := c.loadAudits(); err != nil {
return err
}
if err := c.setupAudits(); err != nil {
return err
}
c.metricsCh = make(chan struct{})
go c.emitMetrics(c.metricsCh)
c.logger.Printf("[INFO] core: post-unseal setup complete")
return nil
}
// preSeal is invoked before the barrier is sealed, allowing
// for any state teardown required.
func (c *Core) preSeal() error {
defer metrics.MeasureSince([]string{"core", "pre_seal"}, time.Now())
c.logger.Printf("[INFO] core: pre-seal teardown starting")
// Clear any rekey progress
c.rekeyConfig = nil
c.rekeyProgress = nil
if c.metricsCh != nil {
close(c.metricsCh)
c.metricsCh = nil
}
var result error
if err := c.teardownAudits(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error tearing down audits: {{err}}", err))
}
if err := c.stopExpiration(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error stopping expiration: {{err}}", err))
}
if err := c.teardownCredentials(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error tearing down credentials: {{err}}", err))
}
if err := c.teardownPolicyStore(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error tearing down policy store: {{err}}", err))
}
if err := c.stopRollback(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error stopping rollback: {{err}}", err))
}
if err := c.unloadMounts(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("[ERR] error unloading mounts: {{err}}", err))
}
if cache, ok := c.physical.(*physical.Cache); ok {
cache.Purge()
}
c.logger.Printf("[INFO] core: pre-seal teardown complete")
return result
}
// runStandby is a long running routine that is used when an HA backend
// is enabled. It waits until we are leader and switches this Vault to
// active.
func (c *Core) runStandby(doneCh, stopCh chan struct{}) {
defer close(doneCh)
c.logger.Printf("[INFO] core: entering standby mode")
// Monitor for key rotation
keyRotateDone := make(chan struct{})
keyRotateStop := make(chan struct{})
go c.periodicCheckKeyUpgrade(keyRotateDone, keyRotateStop)
defer func() {
close(keyRotateStop)
<-keyRotateDone
}()
for {
// Check for a shutdown
select {
case <-stopCh:
return
default:
}
// Create a lock
uuid := uuid.GenerateUUID()
lock, err := c.ha.LockWith(coreLockPath, uuid)
if err != nil {
c.logger.Printf("[ERR] core: failed to create lock: %v", err)
return
}
// Attempt the acquisition
leaderLostCh := c.acquireLock(lock, stopCh)
// Bail if we are being shutdown
if leaderLostCh == nil {
return
}
c.logger.Printf("[INFO] core: acquired lock, enabling active operation")
// Advertise ourself as leader
if err := c.advertiseLeader(uuid, leaderLostCh); err != nil {
c.logger.Printf("[ERR] core: leader advertisement setup failed: %v", err)
lock.Unlock()
continue
}
// Attempt the post-unseal process
c.stateLock.Lock()
err = c.postUnseal()
if err == nil {
c.standby = false
}
c.stateLock.Unlock()
// Handle a failure to unseal
if err != nil {
c.logger.Printf("[ERR] core: post-unseal setup failed: %v", err)
lock.Unlock()
continue
}
// Monitor a loss of leadership
select {
case <-leaderLostCh:
c.logger.Printf("[WARN] core: leadership lost, stopping active operation")
case <-stopCh:
c.logger.Printf("[WARN] core: stopping active operation")
}
// Clear ourself as leader
if err := c.clearLeader(uuid); err != nil {
c.logger.Printf("[ERR] core: clearing leader advertisement failed: %v", err)
}
// Attempt the pre-seal process
c.stateLock.Lock()
c.standby = true
preSealErr := c.preSeal()
c.stateLock.Unlock()
// Give up leadership
lock.Unlock()
// Check for a failure to prepare to seal
if preSealErr != nil {
c.logger.Printf("[ERR] core: pre-seal teardown failed: %v", err)
}
}
}
// periodicCheckKeyUpgrade is used to watch for key rotation events as a standby
func (c *Core) periodicCheckKeyUpgrade(doneCh, stopCh chan struct{}) {
defer close(doneCh)
for {
select {
case <-time.After(keyRotateCheckInterval):
// Only check if we are a standby
c.stateLock.RLock()
standby := c.standby
c.stateLock.RUnlock()
if !standby {
continue
}
if err := c.checkKeyUpgrades(); err != nil {
c.logger.Printf("[ERR] core: key rotation periodic upgrade check failed: %v", err)
}
case <-stopCh:
return
}
}
}
// checkKeyUpgrades is used to check if there have been any key rotations
// and if there is a chain of upgrades available
func (c *Core) checkKeyUpgrades() error {
for {
// Check for an upgrade
didUpgrade, newTerm, err := c.barrier.CheckUpgrade()
if err != nil {
return err
}
// Nothing to do if no upgrade
if !didUpgrade {
break
}
c.logger.Printf("[INFO] core: upgraded to key term %d", newTerm)
}
return nil
}
// scheduleUpgradeCleanup is used to ensure that all the upgrade paths
// are cleaned up in a timely manner if a leader failover takes place
func (c *Core) scheduleUpgradeCleanup() error {
// List the upgrades
upgrades, err := c.barrier.List(keyringUpgradePrefix)
if err != nil {
return fmt.Errorf("failed to list upgrades: %v", err)
}
// Nothing to do if no upgrades
if len(upgrades) == 0 {
return nil
}
// Schedule cleanup for all of them
time.AfterFunc(keyRotateGracePeriod, func() {
for _, upgrade := range upgrades {
path := fmt.Sprintf("%s%s", keyringUpgradePrefix, upgrade)
if err := c.barrier.Delete(path); err != nil {
c.logger.Printf("[ERR] core: failed to cleanup upgrade: %s", path)
}
}
})
return nil
}
// acquireLock blocks until the lock is acquired, returning the leaderLostCh
func (c *Core) acquireLock(lock physical.Lock, stopCh <-chan struct{}) <-chan struct{} {
for {
// Attempt lock acquisition
leaderLostCh, err := lock.Lock(stopCh)
if err == nil {
return leaderLostCh
}
// Retry the acquisition
c.logger.Printf("[ERR] core: failed to acquire lock: %v", err)
select {
case <-time.After(lockRetryInterval):
case <-stopCh:
return nil
}
}
}
// advertiseLeader is used to advertise the current node as leader
func (c *Core) advertiseLeader(uuid string, leaderLostCh <-chan struct{}) error {
go c.cleanLeaderPrefix(uuid, leaderLostCh)
ent := &Entry{
Key: coreLeaderPrefix + uuid,
Value: []byte(c.advertiseAddr),
}
return c.barrier.Put(ent)
}
func (c *Core) cleanLeaderPrefix(uuid string, leaderLostCh <-chan struct{}) {
keys, err := c.barrier.List(coreLeaderPrefix)
if err != nil {
c.logger.Printf("[ERR] core: failed to list entries in core/leader: %v", err)
return
}
for len(keys) > 0 {
select {
case <-time.After(leaderPrefixCleanDelay):
if keys[0] != uuid {
c.barrier.Delete(coreLeaderPrefix + keys[0])
}
keys = keys[1:]
case <-leaderLostCh:
return
}
}
}
// clearLeader is used to clear our leadership entry
func (c *Core) clearLeader(uuid string) error {
key := coreLeaderPrefix + uuid
return c.barrier.Delete(key)
}
// emitMetrics is used to periodically expose metrics while runnig
func (c *Core) emitMetrics(stopCh chan struct{}) {
for {
select {
case <-time.After(time.Second):
c.metricsMutex.Lock()
if c.expiration != nil {
c.expiration.emitMetrics()
}
c.metricsMutex.Unlock()
case <-stopCh:
return
}
}
}