open-vault/shamir/shamir.go

224 lines
5.8 KiB
Go

package shamir
import (
"crypto/rand"
"fmt"
)
const (
// ShareOverhead is the byte size overhead of each share
// when using Split on a secret. This is caused by appending
// a one byte tag to the share.
ShareOverhead = 1
)
// polynomial represents a polynomial of arbitrary degree
type polynomial struct {
coefficients []uint8
}
// makePolynomial constructs a random polynomial of the given
// degree but with the provided intercept value.
func makePolynomial(intercept, degree uint8) (polynomial, error) {
// Create a wrapper
p := polynomial{
coefficients: make([]byte, degree+1),
}
// Ensure the intercept is set
p.coefficients[0] = intercept
// Assign random co-efficients to the polynomial, ensuring
// the highest order co-efficient is non-zero
for p.coefficients[degree] == 0 {
if _, err := rand.Read(p.coefficients[1:]); err != nil {
return p, err
}
}
return p, nil
}
// evaluate returns the value of the polynomial for the given x
func (p *polynomial) evaluate(x uint8) uint8 {
// Special case the origin
if x == 0 {
return p.coefficients[0]
}
// Compute the polynomial value using Horner's method.
degree := len(p.coefficients) - 1
out := p.coefficients[degree]
for i := degree - 1; i >= 0; i-- {
coeff := p.coefficients[i]
out = add(mult(out, x), coeff)
}
return out
}
// interpolatePolynomial takes N sample points and returns
// the value at a given x using a lagrange interpolation.
func interpolatePolynomial(x_samples, y_samples []uint8, x uint8) uint8 {
limit := len(x_samples)
var result, basis uint8
for i := 0; i < limit; i++ {
basis = 1
for j := 0; j < limit; j++ {
if i == j {
continue
}
num := add(x, x_samples[j])
denom := add(x_samples[i], x_samples[j])
term := div(num, denom)
basis = mult(basis, term)
}
group := mult(y_samples[i], basis)
result = add(result, group)
}
return result
}
// div divides two numbers in GF(2^8)
func div(a, b uint8) uint8 {
if b == 0 {
panic("divide by zero")
}
if a == 0 {
return 0
}
log_a := logTable[a]
log_b := logTable[b]
diff := (int(log_a) - int(log_b)) % 255
if diff < 0 {
diff += 255
}
return expTable[diff]
}
// mult multiplies two numbers in GF(2^8)
func mult(a, b uint8) (out uint8) {
if a == 0 || b == 0 {
return 0
}
log_a := logTable[a]
log_b := logTable[b]
sum := (int(log_a) + int(log_b)) % 255
return expTable[sum]
}
// add combines two numbers in GF(2^8)
// This can also be used for subtraction since it is symmetric.
func add(a, b uint8) uint8 {
return a ^ b
}
// Split takes an arbitrarily long secret and generates a `parts`
// number of shares, `threshold` of which are required to reconstruct
// the secret. The parts and threshold must be at least 2, and less
// than 256. The returned shares are each one byte longer than the secret
// as they attach a tag used to reconstruct the secret.
func Split(secret []byte, parts, threshold int) ([][]byte, error) {
// Sanity check the input
if parts < threshold {
return nil, fmt.Errorf("parts cannot be less than threshold")
}
if parts > 255 {
return nil, fmt.Errorf("parts cannot exceed 255")
}
if threshold < 2 {
return nil, fmt.Errorf("threshold must be at least 2")
}
if threshold > 255 {
return nil, fmt.Errorf("threshold cannot exceed 255")
}
if len(secret) == 0 {
return nil, fmt.Errorf("cannot split an empty secret")
}
// Allocate the output array, initialize the final byte
// of the output with the offset. The representation of each
// output is {y1, y2, .., yN, x}.
out := make([][]byte, parts)
for idx := range out {
out[idx] = make([]byte, len(secret)+1)
out[idx][len(secret)] = uint8(idx) + 1
}
// Construct a random polynomial for each byte of the secret.
// Because we are using a field of size 256, we can only represent
// a single byte as the intercept of the polynomial, so we must
// use a new polynomial for each byte.
for idx, val := range secret {
p, err := makePolynomial(val, uint8(threshold-1))
if err != nil {
return nil, fmt.Errorf("failed to generate polynomial: %v", err)
}
// Generate a `parts` number of (x,y) pairs
// We cheat by encoding the x value once as the final index,
// so that it only needs to be stored once.
for i := 0; i < parts; i++ {
x := uint8(i) + 1
y := p.evaluate(x)
out[i][idx] = y
}
}
// Return the encoded secrets
return out, nil
}
// Combine is used to reverse a Split and reconstruct a secret
// once a `threshold` number of parts are available.
func Combine(parts [][]byte) ([]byte, error) {
// Verify enough parts provided
if len(parts) < 2 {
return nil, fmt.Errorf("less than two parts cannot be used to reconstruct the secret")
}
// Verify the parts are all the same length
firstPartLen := len(parts[0])
if firstPartLen < 2 {
return nil, fmt.Errorf("parts must be at least two bytes")
}
for i := 1; i < len(parts); i++ {
if len(parts[i]) != firstPartLen {
return nil, fmt.Errorf("all parts must be the same length")
}
}
// Create a buffer to store the reconstructed secret
secret := make([]byte, firstPartLen-1)
// Buffer to store the samples
x_samples := make([]uint8, len(parts))
y_samples := make([]uint8, len(parts))
// Set the x value for each sample and ensure no x_sample values are the same,
// otherwise div() can be unhappy
checkMap := map[byte]bool{}
for i, part := range parts {
samp := part[firstPartLen-1]
if exists := checkMap[samp]; exists {
return nil, fmt.Errorf("duplicte part detected")
}
checkMap[samp] = true
x_samples[i] = samp
}
// Reconstruct each byte
for idx := range secret {
// Set the y value for each sample
for i, part := range parts {
y_samples[i] = part[idx]
}
// Interpolte the polynomial and compute the value at 0
val := interpolatePolynomial(x_samples, y_samples, 0)
// Evaluate the 0th value to get the intercept
secret[idx] = val
}
return secret, nil
}