open-vault/builtin/logical/transit/path_keys.go
Matt Schultz 611ab91e5a
Transit byok import endpoints (#15414)
* add import endpoint

* fix unlock

* add import_version

* refactor import endpoints and add tests

* add descriptions

* Update dependencies to include tink for Transit import operations. Convert Transit wrapping key endpoint to use shared wrapping key retrieval method. Disallow import of convergent keys to Transit via BYOK process.

* Include new 'hash_function' parameter on Transit import endpoints to specify OAEP random oracle hash function used to wrap ephemeral AES key.

* Add default values for Transit import endpoint fields. Prevent an OOB panic in Transit import. Proactively zero out ephemeral AES key used in Transit imports.

* Rename some Transit BYOK import variables. Ensure Transit BYOK ephemeral key is of the size specified byt the RFC.

* Add unit tests for Transit BYOK import endpoint.

* Simplify Transit BYOK import tests. Add a conditional on auto rotation to avoid errors on BYOK keys with allow_rotation=false.

* Added hash_function field to Transit import_version endpoint. Reworked Transit import unit tests. Added unit tests for Transit import_version endpoint.

* Add changelog entry for Transit BYOK.

* Transit BYOK formatting fixes.

* Omit 'convergent_encryption' field from Transit BYOK import endpoint, but reject with an error when the field is provided.

* Minor formatting fix in Transit import.

Co-authored-by: rculpepper <rculpepper@hashicorp.com>
2022-05-16 11:50:38 -05:00

384 lines
11 KiB
Go

package transit
import (
"context"
"crypto/elliptic"
"crypto/x509"
"encoding/base64"
"encoding/pem"
"fmt"
"strconv"
"time"
"golang.org/x/crypto/ed25519"
"github.com/fatih/structs"
"github.com/hashicorp/vault/sdk/framework"
"github.com/hashicorp/vault/sdk/helper/keysutil"
"github.com/hashicorp/vault/sdk/logical"
)
func (b *backend) pathListKeys() *framework.Path {
return &framework.Path{
Pattern: "keys/?$",
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.ListOperation: b.pathKeysList,
},
HelpSynopsis: pathPolicyHelpSyn,
HelpDescription: pathPolicyHelpDesc,
}
}
func (b *backend) pathKeys() *framework.Path {
return &framework.Path{
Pattern: "keys/" + framework.GenericNameRegex("name"),
Fields: map[string]*framework.FieldSchema{
"name": {
Type: framework.TypeString,
Description: "Name of the key",
},
"type": {
Type: framework.TypeString,
Default: "aes256-gcm96",
Description: `
The type of key to create. Currently, "aes128-gcm96" (symmetric), "aes256-gcm96" (symmetric), "ecdsa-p256"
(asymmetric), "ecdsa-p384" (asymmetric), "ecdsa-p521" (asymmetric), "ed25519" (asymmetric), "rsa-2048" (asymmetric), "rsa-3072"
(asymmetric), "rsa-4096" (asymmetric) are supported. Defaults to "aes256-gcm96".
`,
},
"derived": {
Type: framework.TypeBool,
Description: `Enables key derivation mode. This
allows for per-transaction unique
keys for encryption operations.`,
},
"convergent_encryption": {
Type: framework.TypeBool,
Description: `Whether to support convergent encryption.
This is only supported when using a key with
key derivation enabled and will require all
requests to carry both a context and 96-bit
(12-byte) nonce. The given nonce will be used
in place of a randomly generated nonce. As a
result, when the same context and nonce are
supplied, the same ciphertext is generated. It
is *very important* when using this mode that
you ensure that all nonces are unique for a
given context. Failing to do so will severely
impact the ciphertext's security.`,
},
"exportable": {
Type: framework.TypeBool,
Description: `Enables keys to be exportable.
This allows for all the valid keys
in the key ring to be exported.`,
},
"allow_plaintext_backup": {
Type: framework.TypeBool,
Description: `Enables taking a backup of the named
key in plaintext format. Once set,
this cannot be disabled.`,
},
"context": {
Type: framework.TypeString,
Description: `Base64 encoded context for key derivation.
When reading a key with key derivation enabled,
if the key type supports public keys, this will
return the public key for the given context.`,
},
"auto_rotate_period": {
Type: framework.TypeDurationSecond,
Default: 0,
Description: `Amount of time the key should live before
being automatically rotated. A value of 0
(default) disables automatic rotation for the
key.`,
},
},
Callbacks: map[logical.Operation]framework.OperationFunc{
logical.UpdateOperation: b.pathPolicyWrite,
logical.DeleteOperation: b.pathPolicyDelete,
logical.ReadOperation: b.pathPolicyRead,
},
HelpSynopsis: pathPolicyHelpSyn,
HelpDescription: pathPolicyHelpDesc,
}
}
func (b *backend) pathKeysList(ctx context.Context, req *logical.Request, d *framework.FieldData) (*logical.Response, error) {
entries, err := req.Storage.List(ctx, "policy/")
if err != nil {
return nil, err
}
return logical.ListResponse(entries), nil
}
func (b *backend) pathPolicyWrite(ctx context.Context, req *logical.Request, d *framework.FieldData) (*logical.Response, error) {
name := d.Get("name").(string)
derived := d.Get("derived").(bool)
convergent := d.Get("convergent_encryption").(bool)
keyType := d.Get("type").(string)
exportable := d.Get("exportable").(bool)
allowPlaintextBackup := d.Get("allow_plaintext_backup").(bool)
autoRotatePeriod := time.Second * time.Duration(d.Get("auto_rotate_period").(int))
if autoRotatePeriod != 0 && autoRotatePeriod < time.Hour {
return logical.ErrorResponse("auto rotate period must be 0 to disable or at least an hour"), nil
}
if !derived && convergent {
return logical.ErrorResponse("convergent encryption requires derivation to be enabled"), nil
}
polReq := keysutil.PolicyRequest{
Upsert: true,
Storage: req.Storage,
Name: name,
Derived: derived,
Convergent: convergent,
Exportable: exportable,
AllowPlaintextBackup: allowPlaintextBackup,
AutoRotatePeriod: autoRotatePeriod,
}
switch keyType {
case "aes128-gcm96":
polReq.KeyType = keysutil.KeyType_AES128_GCM96
case "aes256-gcm96":
polReq.KeyType = keysutil.KeyType_AES256_GCM96
case "chacha20-poly1305":
polReq.KeyType = keysutil.KeyType_ChaCha20_Poly1305
case "ecdsa-p256":
polReq.KeyType = keysutil.KeyType_ECDSA_P256
case "ecdsa-p384":
polReq.KeyType = keysutil.KeyType_ECDSA_P384
case "ecdsa-p521":
polReq.KeyType = keysutil.KeyType_ECDSA_P521
case "ed25519":
polReq.KeyType = keysutil.KeyType_ED25519
case "rsa-2048":
polReq.KeyType = keysutil.KeyType_RSA2048
case "rsa-3072":
polReq.KeyType = keysutil.KeyType_RSA3072
case "rsa-4096":
polReq.KeyType = keysutil.KeyType_RSA4096
default:
return logical.ErrorResponse(fmt.Sprintf("unknown key type %v", keyType)), logical.ErrInvalidRequest
}
p, upserted, err := b.GetPolicy(ctx, polReq, b.GetRandomReader())
if err != nil {
return nil, err
}
if p == nil {
return nil, fmt.Errorf("error generating key: returned policy was nil")
}
if b.System().CachingDisabled() {
p.Unlock()
}
resp := &logical.Response{}
if !upserted {
resp.AddWarning(fmt.Sprintf("key %s already existed", name))
}
return nil, nil
}
// Built-in helper type for returning asymmetric keys
type asymKey struct {
Name string `json:"name" structs:"name" mapstructure:"name"`
PublicKey string `json:"public_key" structs:"public_key" mapstructure:"public_key"`
CreationTime time.Time `json:"creation_time" structs:"creation_time" mapstructure:"creation_time"`
}
func (b *backend) pathPolicyRead(ctx context.Context, req *logical.Request, d *framework.FieldData) (*logical.Response, error) {
name := d.Get("name").(string)
p, _, err := b.GetPolicy(ctx, keysutil.PolicyRequest{
Storage: req.Storage,
Name: name,
}, b.GetRandomReader())
if err != nil {
return nil, err
}
if p == nil {
return nil, nil
}
if !b.System().CachingDisabled() {
p.Lock(false)
}
defer p.Unlock()
// Return the response
resp := &logical.Response{
Data: map[string]interface{}{
"name": p.Name,
"type": p.Type.String(),
"derived": p.Derived,
"deletion_allowed": p.DeletionAllowed,
"min_available_version": p.MinAvailableVersion,
"min_decryption_version": p.MinDecryptionVersion,
"min_encryption_version": p.MinEncryptionVersion,
"latest_version": p.LatestVersion,
"exportable": p.Exportable,
"allow_plaintext_backup": p.AllowPlaintextBackup,
"supports_encryption": p.Type.EncryptionSupported(),
"supports_decryption": p.Type.DecryptionSupported(),
"supports_signing": p.Type.SigningSupported(),
"supports_derivation": p.Type.DerivationSupported(),
"auto_rotate_period": int64(p.AutoRotatePeriod.Seconds()),
"imported_key": p.Imported,
},
}
if p.Imported {
resp.Data["imported_key_allow_rotation"] = p.AllowImportedKeyRotation
}
if p.BackupInfo != nil {
resp.Data["backup_info"] = map[string]interface{}{
"time": p.BackupInfo.Time,
"version": p.BackupInfo.Version,
}
}
if p.RestoreInfo != nil {
resp.Data["restore_info"] = map[string]interface{}{
"time": p.RestoreInfo.Time,
"version": p.RestoreInfo.Version,
}
}
if p.Derived {
switch p.KDF {
case keysutil.Kdf_hmac_sha256_counter:
resp.Data["kdf"] = "hmac-sha256-counter"
resp.Data["kdf_mode"] = "hmac-sha256-counter"
case keysutil.Kdf_hkdf_sha256:
resp.Data["kdf"] = "hkdf_sha256"
}
resp.Data["convergent_encryption"] = p.ConvergentEncryption
if p.ConvergentEncryption {
resp.Data["convergent_encryption_version"] = p.ConvergentVersion
}
}
contextRaw := d.Get("context").(string)
var context []byte
if len(contextRaw) != 0 {
context, err = base64.StdEncoding.DecodeString(contextRaw)
if err != nil {
return logical.ErrorResponse("failed to base64-decode context"), logical.ErrInvalidRequest
}
}
switch p.Type {
case keysutil.KeyType_AES128_GCM96, keysutil.KeyType_AES256_GCM96, keysutil.KeyType_ChaCha20_Poly1305:
retKeys := map[string]int64{}
for k, v := range p.Keys {
retKeys[k] = v.DeprecatedCreationTime
}
resp.Data["keys"] = retKeys
case keysutil.KeyType_ECDSA_P256, keysutil.KeyType_ECDSA_P384, keysutil.KeyType_ECDSA_P521, keysutil.KeyType_ED25519, keysutil.KeyType_RSA2048, keysutil.KeyType_RSA3072, keysutil.KeyType_RSA4096:
retKeys := map[string]map[string]interface{}{}
for k, v := range p.Keys {
key := asymKey{
PublicKey: v.FormattedPublicKey,
CreationTime: v.CreationTime,
}
if key.CreationTime.IsZero() {
key.CreationTime = time.Unix(v.DeprecatedCreationTime, 0)
}
switch p.Type {
case keysutil.KeyType_ECDSA_P256:
key.Name = elliptic.P256().Params().Name
case keysutil.KeyType_ECDSA_P384:
key.Name = elliptic.P384().Params().Name
case keysutil.KeyType_ECDSA_P521:
key.Name = elliptic.P521().Params().Name
case keysutil.KeyType_ED25519:
if p.Derived {
if len(context) == 0 {
key.PublicKey = ""
} else {
ver, err := strconv.Atoi(k)
if err != nil {
return nil, fmt.Errorf("invalid version %q: %w", k, err)
}
derived, err := p.GetKey(context, ver, 32)
if err != nil {
return nil, fmt.Errorf("failed to derive key to return public component")
}
pubKey := ed25519.PrivateKey(derived).Public().(ed25519.PublicKey)
key.PublicKey = base64.StdEncoding.EncodeToString(pubKey)
}
}
key.Name = "ed25519"
case keysutil.KeyType_RSA2048, keysutil.KeyType_RSA3072, keysutil.KeyType_RSA4096:
key.Name = "rsa-2048"
if p.Type == keysutil.KeyType_RSA3072 {
key.Name = "rsa-3072"
}
if p.Type == keysutil.KeyType_RSA4096 {
key.Name = "rsa-4096"
}
// Encode the RSA public key in PEM format to return over the
// API
derBytes, err := x509.MarshalPKIXPublicKey(v.RSAKey.Public())
if err != nil {
return nil, fmt.Errorf("error marshaling RSA public key: %w", err)
}
pemBlock := &pem.Block{
Type: "PUBLIC KEY",
Bytes: derBytes,
}
pemBytes := pem.EncodeToMemory(pemBlock)
if pemBytes == nil || len(pemBytes) == 0 {
return nil, fmt.Errorf("failed to PEM-encode RSA public key")
}
key.PublicKey = string(pemBytes)
}
retKeys[k] = structs.New(key).Map()
}
resp.Data["keys"] = retKeys
}
return resp, nil
}
func (b *backend) pathPolicyDelete(ctx context.Context, req *logical.Request, d *framework.FieldData) (*logical.Response, error) {
name := d.Get("name").(string)
// Delete does its own locking
err := b.lm.DeletePolicy(ctx, req.Storage, name)
if err != nil {
return logical.ErrorResponse(fmt.Sprintf("error deleting policy %s: %s", name, err)), err
}
return nil, nil
}
const pathPolicyHelpSyn = `Managed named encryption keys`
const pathPolicyHelpDesc = `
This path is used to manage the named keys that are available.
Doing a write with no value against a new named key will create
it using a randomly generated key.
`