open-vault/vault/barrier_aes_gcm.go

1222 lines
30 KiB
Go

package vault
import (
"context"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"errors"
"fmt"
"io"
"strconv"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-secure-stdlib/strutil"
"github.com/hashicorp/vault/sdk/helper/jsonutil"
"github.com/hashicorp/vault/sdk/logical"
"github.com/hashicorp/vault/sdk/physical"
"go.uber.org/atomic"
)
const (
// initialKeyTerm is the hard coded initial key term. This is
// used only for values that are not encrypted with the keyring.
initialKeyTerm = 1
// termSize the number of bytes used for the key term.
termSize = 4
autoRotateCheckInterval = 5 * time.Minute
legacyRotateReason = "legacy rotation"
)
// Versions of the AESGCM storage methodology
const (
AESGCMVersion1 = 0x1
AESGCMVersion2 = 0x2
)
// barrierInit is the JSON encoded value stored
type barrierInit struct {
Version int // Version is the current format version
Key []byte // Key is the primary encryption key
}
// Validate AESGCMBarrier satisfies SecurityBarrier interface
var (
_ SecurityBarrier = &AESGCMBarrier{}
barrierEncryptsMetric = []string{"barrier", "estimated_encryptions"}
barrierRotationsMetric = []string{"barrier", "auto_rotation"}
)
// AESGCMBarrier is a SecurityBarrier implementation that uses the AES
// cipher core and the Galois Counter Mode block mode. It defaults to
// the golang NONCE default value of 12 and a key size of 256
// bit. AES-GCM is high performance, and provides both confidentiality
// and integrity.
type AESGCMBarrier struct {
backend physical.Backend
l sync.RWMutex
sealed bool
// keyring is used to maintain all of the encryption keys, including
// the active key used for encryption, but also prior keys to allow
// decryption of keys encrypted under previous terms.
keyring *Keyring
// cache is used to reduce the number of AEAD constructions we do
cache map[uint32]cipher.AEAD
cacheLock sync.RWMutex
// currentAESGCMVersionByte is prefixed to a message to allow for
// future versioning of barrier implementations. It's var instead
// of const to allow for testing
currentAESGCMVersionByte byte
initialized atomic.Bool
UnaccountedEncryptions *atomic.Int64
// Used only for testing
RemoteEncryptions *atomic.Int64
totalLocalEncryptions *atomic.Int64
}
func (b *AESGCMBarrier) RotationConfig() (kc KeyRotationConfig, err error) {
if b.keyring == nil {
return kc, errors.New("keyring not yet present")
}
return b.keyring.rotationConfig.Clone(), nil
}
func (b *AESGCMBarrier) SetRotationConfig(ctx context.Context, rotConfig KeyRotationConfig) error {
b.l.Lock()
defer b.l.Unlock()
rotConfig.Sanitize()
if !rotConfig.Equals(b.keyring.rotationConfig) {
b.keyring.rotationConfig = rotConfig
return b.persistKeyring(ctx, b.keyring)
}
return nil
}
// NewAESGCMBarrier is used to construct a new barrier that uses
// the provided physical backend for storage.
func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) {
b := &AESGCMBarrier{
backend: physical,
sealed: true,
cache: make(map[uint32]cipher.AEAD),
currentAESGCMVersionByte: byte(AESGCMVersion2),
UnaccountedEncryptions: atomic.NewInt64(0),
RemoteEncryptions: atomic.NewInt64(0),
totalLocalEncryptions: atomic.NewInt64(0),
}
return b, nil
}
// Initialized checks if the barrier has been initialized
// and has a root key set.
func (b *AESGCMBarrier) Initialized(ctx context.Context) (bool, error) {
if b.initialized.Load() {
return true, nil
}
// Read the keyring file
keys, err := b.backend.List(ctx, keyringPrefix)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %w", err)
}
if strutil.StrListContains(keys, "keyring") {
b.initialized.Store(true)
return true, nil
}
// Fallback, check for the old sentinel file
out, err := b.backend.Get(ctx, barrierInitPath)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %w", err)
}
b.initialized.Store(out != nil)
return out != nil, nil
}
// Initialize works only if the barrier has not been initialized
// and makes use of the given root key.
func (b *AESGCMBarrier) Initialize(ctx context.Context, key, sealKey []byte, reader io.Reader) error {
// Verify the key size
min, max := b.KeyLength()
if len(key) < min || len(key) > max {
return fmt.Errorf("key size must be %d or %d", min, max)
}
// Check if already initialized
if alreadyInit, err := b.Initialized(ctx); err != nil {
return err
} else if alreadyInit {
return ErrBarrierAlreadyInit
}
// Generate encryption key
encrypt, err := b.GenerateKey(reader)
if err != nil {
return fmt.Errorf("failed to generate encryption key: %w", err)
}
// Create a new keyring, install the keys
keyring := NewKeyring()
keyring = keyring.SetRootKey(key)
keyring, err = keyring.AddKey(&Key{
Term: 1,
Version: 1,
Value: encrypt,
})
if err != nil {
return fmt.Errorf("failed to create keyring: %w", err)
}
err = b.persistKeyring(ctx, keyring)
if err != nil {
return err
}
if len(sealKey) > 0 {
primary, err := b.aeadFromKey(encrypt)
if err != nil {
return err
}
err = b.putInternal(ctx, 1, primary, &logical.StorageEntry{
Key: shamirKekPath,
Value: sealKey,
})
if err != nil {
return fmt.Errorf("failed to store new seal key: %w", err)
}
}
return nil
}
// persistKeyring is used to write out the keyring using the
// root key to encrypt it.
func (b *AESGCMBarrier) persistKeyring(ctx context.Context, keyring *Keyring) error {
// Create the keyring entry
keyringBuf, err := keyring.Serialize()
defer memzero(keyringBuf)
if err != nil {
return fmt.Errorf("failed to serialize keyring: %w", err)
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(keyring.RootKey())
if err != nil {
return err
}
// Encrypt the barrier init value
value, err := b.encrypt(keyringPath, initialKeyTerm, gcm, keyringBuf)
if err != nil {
return err
}
// Create the keyring physical entry
pe := &physical.Entry{
Key: keyringPath,
Value: value,
}
if err := b.backend.Put(ctx, pe); err != nil {
return fmt.Errorf("failed to persist keyring: %w", err)
}
// Serialize the root key value
key := &Key{
Term: 1,
Version: 1,
Value: keyring.RootKey(),
}
keyBuf, err := key.Serialize()
defer memzero(keyBuf)
if err != nil {
return fmt.Errorf("failed to serialize root key: %w", err)
}
// Encrypt the root key
activeKey := keyring.ActiveKey()
aead, err := b.aeadFromKey(activeKey.Value)
if err != nil {
return err
}
value, err = b.encryptTracked(rootKeyPath, activeKey.Term, aead, keyBuf)
if err != nil {
return err
}
// Update the rootKeyPath for standby instances
pe = &physical.Entry{
Key: rootKeyPath,
Value: value,
}
if err := b.backend.Put(ctx, pe); err != nil {
return fmt.Errorf("failed to persist root key: %w", err)
}
return nil
}
// GenerateKey is used to generate a new key
func (b *AESGCMBarrier) GenerateKey(reader io.Reader) ([]byte, error) {
// Generate a 256bit key
buf := make([]byte, 2*aes.BlockSize)
_, err := reader.Read(buf)
return buf, err
}
// KeyLength is used to sanity check a key
func (b *AESGCMBarrier) KeyLength() (int, int) {
return aes.BlockSize, 2 * aes.BlockSize
}
// Sealed checks if the barrier has been unlocked yet. The Barrier
// is not expected to be able to perform any CRUD until it is unsealed.
func (b *AESGCMBarrier) Sealed() (bool, error) {
b.l.RLock()
sealed := b.sealed
b.l.RUnlock()
return sealed, nil
}
// VerifyRoot is used to check if the given key matches the root key
func (b *AESGCMBarrier) VerifyRoot(key []byte) error {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
if subtle.ConstantTimeCompare(key, b.keyring.RootKey()) != 1 {
return ErrBarrierInvalidKey
}
return nil
}
// ReloadKeyring is used to re-read the underlying keyring.
// This is used for HA deployments to ensure the latest keyring
// is present in the leader.
func (b *AESGCMBarrier) ReloadKeyring(ctx context.Context) error {
b.l.Lock()
defer b.l.Unlock()
// Create the AES-GCM
gcm, err := b.aeadFromKey(b.keyring.RootKey())
if err != nil {
return err
}
// Read in the keyring
out, err := b.backend.Get(ctx, keyringPath)
if err != nil {
return fmt.Errorf("failed to check for keyring: %w", err)
}
// Ensure that the keyring exists. This should never happen,
// and indicates something really bad has happened.
if out == nil {
return errors.New("keyring unexpectedly missing")
}
// Verify the term is always just one
term := binary.BigEndian.Uint32(out.Value[:4])
if term != initialKeyTerm {
return errors.New("term mis-match")
}
// Decrypt the barrier init key
plain, err := b.decrypt(keyringPath, gcm, out.Value)
defer memzero(plain)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
// Reset enc. counters, this may be a leadership change
b.totalLocalEncryptions.Store(0)
b.totalLocalEncryptions.Store(0)
b.UnaccountedEncryptions.Store(0)
b.RemoteEncryptions.Store(0)
return b.recoverKeyring(plain)
}
func (b *AESGCMBarrier) recoverKeyring(plaintext []byte) error {
keyring, err := DeserializeKeyring(plaintext)
if err != nil {
return fmt.Errorf("keyring deserialization failed: %w", err)
}
// Setup the keyring and finish
b.cache = make(map[uint32]cipher.AEAD)
b.keyring = keyring
return nil
}
// ReloadRootKey is used to re-read the underlying root key.
// This is used for HA deployments to ensure the latest root key
// is available for keyring reloading.
func (b *AESGCMBarrier) ReloadRootKey(ctx context.Context) error {
// Read the rootKeyPath upgrade
out, err := b.Get(ctx, rootKeyPath)
if err != nil {
return fmt.Errorf("failed to read root key path: %w", err)
}
// The rootKeyPath could be missing (backwards incompatible),
// we can ignore this and attempt to make progress with the current
// root key.
if out == nil {
return nil
}
// Grab write lock and refetch
b.l.Lock()
defer b.l.Unlock()
out, err = b.lockSwitchedGet(ctx, rootKeyPath, false)
if err != nil {
return fmt.Errorf("failed to read root key path: %w", err)
}
if out == nil {
return nil
}
// Deserialize the root key
key, err := DeserializeKey(out.Value)
memzero(out.Value)
if err != nil {
return fmt.Errorf("failed to deserialize key: %w", err)
}
// Check if the root key is the same
if subtle.ConstantTimeCompare(b.keyring.RootKey(), key.Value) == 1 {
return nil
}
// Update the root key
oldKeyring := b.keyring
b.keyring = b.keyring.SetRootKey(key.Value)
oldKeyring.Zeroize(false)
return nil
}
// Unseal is used to provide the root key which permits the barrier
// to be unsealed. If the key is not correct, the barrier remains sealed.
func (b *AESGCMBarrier) Unseal(ctx context.Context, key []byte) error {
b.l.Lock()
defer b.l.Unlock()
// Do nothing if already unsealed
if !b.sealed {
return nil
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Read in the keyring
out, err := b.backend.Get(ctx, keyringPath)
if err != nil {
return fmt.Errorf("failed to check for keyring: %w", err)
}
if out != nil {
// Verify the term is always just one
term := binary.BigEndian.Uint32(out.Value[:4])
if term != initialKeyTerm {
return errors.New("term mis-match")
}
// Decrypt the barrier init key
plain, err := b.decrypt(keyringPath, gcm, out.Value)
defer memzero(plain)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
// Recover the keyring
err = b.recoverKeyring(plain)
if err != nil {
return fmt.Errorf("keyring deserialization failed: %w", err)
}
b.sealed = false
return nil
}
// Read the barrier initialization key
out, err = b.backend.Get(ctx, barrierInitPath)
if err != nil {
return fmt.Errorf("failed to check for initialization: %w", err)
}
if out == nil {
return ErrBarrierNotInit
}
// Verify the term is always just one
term := binary.BigEndian.Uint32(out.Value[:4])
if term != initialKeyTerm {
return errors.New("term mis-match")
}
// Decrypt the barrier init key
plain, err := b.decrypt(barrierInitPath, gcm, out.Value)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
defer memzero(plain)
// Unmarshal the barrier init
var init barrierInit
if err := jsonutil.DecodeJSON(plain, &init); err != nil {
return fmt.Errorf("failed to unmarshal barrier init file")
}
// Setup a new keyring, this is for backwards compatibility
keyringNew := NewKeyring()
keyring := keyringNew.SetRootKey(key)
// AddKey reuses the root, so we are only zeroizing after this call
defer keyringNew.Zeroize(false)
keyring, err = keyring.AddKey(&Key{
Term: 1,
Version: 1,
Value: init.Key,
})
if err != nil {
return fmt.Errorf("failed to create keyring: %w", err)
}
if err := b.persistKeyring(ctx, keyring); err != nil {
return err
}
// Delete the old barrier entry
if err := b.backend.Delete(ctx, barrierInitPath); err != nil {
return fmt.Errorf("failed to delete barrier init file: %w", err)
}
// Set the vault as unsealed
b.keyring = keyring
b.sealed = false
return nil
}
// Seal is used to re-seal the barrier. This requires the barrier to
// be unsealed again to perform any further operations.
func (b *AESGCMBarrier) Seal() error {
b.l.Lock()
defer b.l.Unlock()
// Remove the primary key, and seal the vault
b.cache = make(map[uint32]cipher.AEAD)
b.keyring.Zeroize(true)
b.keyring = nil
b.sealed = true
return nil
}
// Rotate is used to create a new encryption key. All future writes
// should use the new key, while old values should still be decryptable.
func (b *AESGCMBarrier) Rotate(ctx context.Context, randomSource io.Reader) (uint32, error) {
b.l.Lock()
defer b.l.Unlock()
if b.sealed {
return 0, ErrBarrierSealed
}
// Generate a new key
encrypt, err := b.GenerateKey(randomSource)
if err != nil {
return 0, fmt.Errorf("failed to generate encryption key: %w", err)
}
// Get the next term
term := b.keyring.ActiveTerm()
newTerm := term + 1
// Add a new encryption key
newKeyring, err := b.keyring.AddKey(&Key{
Term: newTerm,
Version: 1,
Value: encrypt,
})
if err != nil {
return 0, fmt.Errorf("failed to add new encryption key: %w", err)
}
// Persist the new keyring
if err := b.persistKeyring(ctx, newKeyring); err != nil {
return 0, err
}
// Clear encryption tracking
b.RemoteEncryptions.Store(0)
b.totalLocalEncryptions.Store(0)
b.UnaccountedEncryptions.Store(0)
// Swap the keyrings
b.keyring = newKeyring
return newTerm, nil
}
// CreateUpgrade creates an upgrade path key to the given term from the previous term
func (b *AESGCMBarrier) CreateUpgrade(ctx context.Context, term uint32) error {
b.l.RLock()
if b.sealed {
b.l.RUnlock()
return ErrBarrierSealed
}
// Get the key for this term
termKey := b.keyring.TermKey(term)
buf, err := termKey.Serialize()
defer memzero(buf)
if err != nil {
b.l.RUnlock()
return err
}
// Get the AEAD for the previous term
prevTerm := term - 1
primary, err := b.aeadForTerm(prevTerm)
if err != nil {
b.l.RUnlock()
return err
}
key := fmt.Sprintf("%s%d", keyringUpgradePrefix, prevTerm)
value, err := b.encryptTracked(key, prevTerm, primary, buf)
b.l.RUnlock()
if err != nil {
return err
}
// Create upgrade key
pe := &physical.Entry{
Key: key,
Value: value,
}
return b.backend.Put(ctx, pe)
}
// DestroyUpgrade destroys the upgrade path key to the given term
func (b *AESGCMBarrier) DestroyUpgrade(ctx context.Context, term uint32) error {
path := fmt.Sprintf("%s%d", keyringUpgradePrefix, term-1)
return b.Delete(ctx, path)
}
// CheckUpgrade looks for an upgrade to the current term and installs it
func (b *AESGCMBarrier) CheckUpgrade(ctx context.Context) (bool, uint32, error) {
b.l.RLock()
if b.sealed {
b.l.RUnlock()
return false, 0, ErrBarrierSealed
}
// Get the current term
activeTerm := b.keyring.ActiveTerm()
// Check for an upgrade key
upgrade := fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm)
entry, err := b.lockSwitchedGet(ctx, upgrade, false)
if err != nil {
b.l.RUnlock()
return false, 0, err
}
// Nothing to do if no upgrade
if entry == nil {
b.l.RUnlock()
return false, 0, nil
}
// Upgrade from read lock to write lock
b.l.RUnlock()
b.l.Lock()
defer b.l.Unlock()
// Validate base cases and refetch values again
if b.sealed {
return false, 0, ErrBarrierSealed
}
activeTerm = b.keyring.ActiveTerm()
upgrade = fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm)
entry, err = b.lockSwitchedGet(ctx, upgrade, false)
if err != nil {
return false, 0, err
}
if entry == nil {
return false, 0, nil
}
// Deserialize the key
key, err := DeserializeKey(entry.Value)
memzero(entry.Value)
if err != nil {
return false, 0, err
}
// Update the keyring
newKeyring, err := b.keyring.AddKey(key)
if err != nil {
return false, 0, fmt.Errorf("failed to add new encryption key: %w", err)
}
b.keyring = newKeyring
// Done!
return true, key.Term, nil
}
// ActiveKeyInfo is used to inform details about the active key
func (b *AESGCMBarrier) ActiveKeyInfo() (*KeyInfo, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
// Determine the key install time
term := b.keyring.ActiveTerm()
key := b.keyring.TermKey(term)
// Return the key info
info := &KeyInfo{
Term: int(term),
InstallTime: key.InstallTime,
Encryptions: b.encryptions(),
}
return info, nil
}
// Rekey is used to change the root key used to protect the keyring
func (b *AESGCMBarrier) Rekey(ctx context.Context, key []byte) error {
b.l.Lock()
defer b.l.Unlock()
newKeyring, err := b.updateRootKeyCommon(key)
if err != nil {
return err
}
// Persist the new keyring
if err := b.persistKeyring(ctx, newKeyring); err != nil {
return err
}
// Swap the keyrings
oldKeyring := b.keyring
b.keyring = newKeyring
oldKeyring.Zeroize(false)
return nil
}
// SetRootKey updates the keyring's in-memory root key but does not persist
// anything to storage
func (b *AESGCMBarrier) SetRootKey(key []byte) error {
b.l.Lock()
defer b.l.Unlock()
newKeyring, err := b.updateRootKeyCommon(key)
if err != nil {
return err
}
// Swap the keyrings
oldKeyring := b.keyring
b.keyring = newKeyring
oldKeyring.Zeroize(false)
return nil
}
// Performs common tasks related to updating the root key; note that the lock
// must be held before calling this function
func (b *AESGCMBarrier) updateRootKeyCommon(key []byte) (*Keyring, error) {
if b.sealed {
return nil, ErrBarrierSealed
}
// Verify the key size
min, max := b.KeyLength()
if len(key) < min || len(key) > max {
return nil, fmt.Errorf("key size must be %d or %d", min, max)
}
return b.keyring.SetRootKey(key), nil
}
// Put is used to insert or update an entry
func (b *AESGCMBarrier) Put(ctx context.Context, entry *logical.StorageEntry) error {
defer metrics.MeasureSince([]string{"barrier", "put"}, time.Now())
b.l.RLock()
if b.sealed {
b.l.RUnlock()
return ErrBarrierSealed
}
term := b.keyring.ActiveTerm()
primary, err := b.aeadForTerm(term)
b.l.RUnlock()
if err != nil {
return err
}
return b.putInternal(ctx, term, primary, entry)
}
func (b *AESGCMBarrier) putInternal(ctx context.Context, term uint32, primary cipher.AEAD, entry *logical.StorageEntry) error {
value, err := b.encryptTracked(entry.Key, term, primary, entry.Value)
if err != nil {
return err
}
pe := &physical.Entry{
Key: entry.Key,
Value: value,
SealWrap: entry.SealWrap,
}
return b.backend.Put(ctx, pe)
}
// Get is used to fetch an entry
func (b *AESGCMBarrier) Get(ctx context.Context, key string) (*logical.StorageEntry, error) {
return b.lockSwitchedGet(ctx, key, true)
}
func (b *AESGCMBarrier) lockSwitchedGet(ctx context.Context, key string, getLock bool) (*logical.StorageEntry, error) {
defer metrics.MeasureSince([]string{"barrier", "get"}, time.Now())
if getLock {
b.l.RLock()
}
if b.sealed {
if getLock {
b.l.RUnlock()
}
return nil, ErrBarrierSealed
}
// Read the key from the backend
pe, err := b.backend.Get(ctx, key)
if err != nil {
if getLock {
b.l.RUnlock()
}
return nil, err
} else if pe == nil {
if getLock {
b.l.RUnlock()
}
return nil, nil
}
if len(pe.Value) < 4 {
if getLock {
b.l.RUnlock()
}
return nil, errors.New("invalid value")
}
// Verify the term
term := binary.BigEndian.Uint32(pe.Value[:4])
// Get the GCM by term
// It is expensive to do this first but it is not a
// normal case that this won't match
gcm, err := b.aeadForTerm(term)
if getLock {
b.l.RUnlock()
}
if err != nil {
return nil, err
}
if gcm == nil {
return nil, fmt.Errorf("no decryption key available for term %d", term)
}
// Decrypt the ciphertext
plain, err := b.decrypt(key, gcm, pe.Value)
if err != nil {
return nil, fmt.Errorf("decryption failed: %w", err)
}
// Wrap in a logical entry
entry := &logical.StorageEntry{
Key: key,
Value: plain,
SealWrap: pe.SealWrap,
}
return entry, nil
}
// Delete is used to permanently delete an entry
func (b *AESGCMBarrier) Delete(ctx context.Context, key string) error {
defer metrics.MeasureSince([]string{"barrier", "delete"}, time.Now())
b.l.RLock()
sealed := b.sealed
b.l.RUnlock()
if sealed {
return ErrBarrierSealed
}
return b.backend.Delete(ctx, key)
}
// List is used ot list all the keys under a given
// prefix, up to the next prefix.
func (b *AESGCMBarrier) List(ctx context.Context, prefix string) ([]string, error) {
defer metrics.MeasureSince([]string{"barrier", "list"}, time.Now())
b.l.RLock()
sealed := b.sealed
b.l.RUnlock()
if sealed {
return nil, ErrBarrierSealed
}
return b.backend.List(ctx, prefix)
}
// aeadForTerm returns the AES-GCM AEAD for the given term
func (b *AESGCMBarrier) aeadForTerm(term uint32) (cipher.AEAD, error) {
// Check for the keyring
keyring := b.keyring
if keyring == nil {
return nil, nil
}
// Check the cache for the aead
b.cacheLock.RLock()
aead, ok := b.cache[term]
b.cacheLock.RUnlock()
if ok {
return aead, nil
}
// Read the underlying key
key := keyring.TermKey(term)
if key == nil {
return nil, nil
}
// Create a new aead
aead, err := b.aeadFromKey(key.Value)
if err != nil {
return nil, err
}
// Update the cache
b.cacheLock.Lock()
b.cache[term] = aead
b.cacheLock.Unlock()
return aead, nil
}
// aeadFromKey returns an AES-GCM AEAD using the given key.
func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) {
// Create the AES cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return nil, fmt.Errorf("failed to create cipher: %w", err)
}
// Create the GCM mode AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return nil, fmt.Errorf("failed to initialize GCM mode")
}
return gcm, nil
}
// encrypt is used to encrypt a value
func (b *AESGCMBarrier) encrypt(path string, term uint32, gcm cipher.AEAD, plain []byte) ([]byte, error) {
// Allocate the output buffer with room for tern, version byte,
// nonce, GCM tag and the plaintext
capacity := termSize + 1 + gcm.NonceSize() + gcm.Overhead() + len(plain)
if capacity < 0 {
return nil, ErrPlaintextTooLarge
}
size := termSize + 1 + gcm.NonceSize()
out := make([]byte, size, capacity)
// Set the key term
binary.BigEndian.PutUint32(out[:4], term)
// Set the version byte
out[4] = b.currentAESGCMVersionByte
// Generate a random nonce
nonce := out[5 : 5+gcm.NonceSize()]
n, err := rand.Read(nonce)
if err != nil {
return nil, err
}
if n != len(nonce) {
return nil, errors.New("unable to read enough random bytes to fill gcm nonce")
}
// Seal the output
switch b.currentAESGCMVersionByte {
case AESGCMVersion1:
out = gcm.Seal(out, nonce, plain, nil)
case AESGCMVersion2:
aad := []byte(nil)
if path != "" {
aad = []byte(path)
}
out = gcm.Seal(out, nonce, plain, aad)
default:
panic("Unknown AESGCM version")
}
return out, nil
}
func termLabel(term uint32) []metrics.Label {
return []metrics.Label{
{
Name: "term",
Value: strconv.FormatUint(uint64(term), 10),
},
}
}
// decrypt is used to decrypt a value using the keyring
func (b *AESGCMBarrier) decrypt(path string, gcm cipher.AEAD, cipher []byte) ([]byte, error) {
// Capture the parts
nonce := cipher[5 : 5+gcm.NonceSize()]
raw := cipher[5+gcm.NonceSize():]
out := make([]byte, 0, len(raw)-gcm.NonceSize())
// Attempt to open
switch cipher[4] {
case AESGCMVersion1:
return gcm.Open(out, nonce, raw, nil)
case AESGCMVersion2:
aad := []byte(nil)
if path != "" {
aad = []byte(path)
}
return gcm.Open(out, nonce, raw, aad)
default:
return nil, fmt.Errorf("version bytes mis-match")
}
}
// Encrypt is used to encrypt in-memory for the BarrierEncryptor interface
func (b *AESGCMBarrier) Encrypt(ctx context.Context, key string, plaintext []byte) ([]byte, error) {
b.l.RLock()
if b.sealed {
b.l.RUnlock()
return nil, ErrBarrierSealed
}
term := b.keyring.ActiveTerm()
primary, err := b.aeadForTerm(term)
b.l.RUnlock()
if err != nil {
return nil, err
}
ciphertext, err := b.encryptTracked(key, term, primary, plaintext)
if err != nil {
return nil, err
}
return ciphertext, nil
}
// Decrypt is used to decrypt in-memory for the BarrierEncryptor interface
func (b *AESGCMBarrier) Decrypt(_ context.Context, key string, ciphertext []byte) ([]byte, error) {
b.l.RLock()
if b.sealed {
b.l.RUnlock()
return nil, ErrBarrierSealed
}
// Verify the term
term := binary.BigEndian.Uint32(ciphertext[:4])
// Get the GCM by term
// It is expensive to do this first but it is not a
// normal case that this won't match
gcm, err := b.aeadForTerm(term)
b.l.RUnlock()
if err != nil {
return nil, err
}
if gcm == nil {
return nil, fmt.Errorf("no decryption key available for term %d", term)
}
// Decrypt the ciphertext
plain, err := b.decrypt(key, gcm, ciphertext)
if err != nil {
return nil, fmt.Errorf("decryption failed: %w", err)
}
return plain, nil
}
func (b *AESGCMBarrier) Keyring() (*Keyring, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
return b.keyring.Clone(), nil
}
func (b *AESGCMBarrier) ConsumeEncryptionCount(consumer func(int64) error) error {
if b.keyring != nil {
// Lock to prevent replacement of the key while we consume the encryptions
b.l.RLock()
defer b.l.RUnlock()
c := b.UnaccountedEncryptions.Load()
err := consumer(c)
if err == nil && c > 0 {
// Consumer succeeded, remove those from local encryptions
b.UnaccountedEncryptions.Sub(c)
}
return err
}
return nil
}
func (b *AESGCMBarrier) AddRemoteEncryptions(encryptions int64) {
// For rollup and persistence
b.UnaccountedEncryptions.Add(encryptions)
// For testing
b.RemoteEncryptions.Add(encryptions)
}
func (b *AESGCMBarrier) encryptTracked(path string, term uint32, gcm cipher.AEAD, buf []byte) ([]byte, error) {
ct, err := b.encrypt(path, term, gcm, buf)
if err != nil {
return nil, err
}
// Increment the local encryption count, and track metrics
b.UnaccountedEncryptions.Add(1)
b.totalLocalEncryptions.Add(1)
metrics.IncrCounterWithLabels(barrierEncryptsMetric, 1, termLabel(term))
return ct, nil
}
// UnaccountedEncryptions returns the number of encryptions made on the local instance only for the current key term
func (b *AESGCMBarrier) TotalLocalEncryptions() int64 {
return b.totalLocalEncryptions.Load()
}
func (b *AESGCMBarrier) CheckBarrierAutoRotate(ctx context.Context) (string, error) {
const oneYear = 24 * 365 * time.Hour
reason, err := func() (string, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.keyring != nil {
// Rotation Checks
var reason string
rc, err := b.RotationConfig()
if err != nil {
return "", err
}
if !rc.Disabled {
activeKey := b.keyring.ActiveKey()
ops := b.encryptions()
switch {
case activeKey.Encryptions == 0 && !activeKey.InstallTime.IsZero() && time.Since(activeKey.InstallTime) > oneYear:
reason = legacyRotateReason
case ops > rc.MaxOperations:
reason = "reached max operations"
case rc.Interval > 0 && time.Since(activeKey.InstallTime) > rc.Interval:
reason = "rotation interval reached"
}
}
return reason, nil
}
return "", nil
}()
if err != nil {
return "", err
}
if reason != "" {
return reason, nil
}
b.l.Lock()
defer b.l.Unlock()
if b.keyring != nil {
err := b.persistEncryptions(ctx)
if err != nil {
return "", err
}
}
return reason, nil
}
// Must be called with lock held
func (b *AESGCMBarrier) persistEncryptions(ctx context.Context) error {
if !b.sealed {
// Encryption count persistence
upe := b.UnaccountedEncryptions.Load()
if upe > 0 {
activeKey := b.keyring.ActiveKey()
// Move local (unpersisted) encryptions to the key and persist. This prevents us from needing to persist if
// there has been no activity. Since persistence performs an encryption, perversely we zero out after
// persistence and add 1 to the count to avoid this operation guaranteeing we need another
// autoRotateCheckInterval later.
newEncs := upe + 1
activeKey.Encryptions += uint64(newEncs)
newKeyring := b.keyring.Clone()
err := b.persistKeyring(ctx, newKeyring)
if err != nil {
return err
}
b.UnaccountedEncryptions.Sub(newEncs)
}
}
return nil
}
// Mostly for testing, returns the total number of encryption operations performed on the active term
func (b *AESGCMBarrier) encryptions() int64 {
if b.keyring != nil {
activeKey := b.keyring.ActiveKey()
if activeKey != nil {
return b.UnaccountedEncryptions.Load() + int64(activeKey.Encryptions)
}
}
return 0
}