open-vault/helper/certutil/types.go

593 lines
18 KiB
Go

// Package certutil contains helper functions that are mostly used
// with the PKI backend but can be generally useful. Functionality
// includes helpers for converting a certificate/private key bundle
// between DER and PEM, printing certificate serial numbers, and more.
//
// Functionality specific to the PKI backend includes some types
// and helper methods to make requesting certificates from the
// backend easy.
package certutil
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/tls"
"crypto/x509"
"encoding/pem"
"fmt"
"math/big"
"strings"
"github.com/hashicorp/vault/helper/errutil"
)
// Secret is used to attempt to unmarshal a Vault secret
// JSON response, as a convenience
type Secret struct {
Data map[string]interface{} `json:"data"`
}
// PrivateKeyType holds a string representation of the type of private key (ec
// or rsa) referenced in CertBundle and ParsedCertBundle. This uses colloquial
// names rather than official names, to eliminate confusion
type PrivateKeyType string
//Well-known PrivateKeyTypes
const (
UnknownPrivateKey PrivateKeyType = ""
RSAPrivateKey PrivateKeyType = "rsa"
ECPrivateKey PrivateKeyType = "ec"
)
// TLSUsage controls whether the intended usage of a *tls.Config
// returned from ParsedCertBundle.GetTLSConfig is for server use,
// client use, or both, which affects which values are set
type TLSUsage int
//Well-known TLSUsage types
const (
TLSUnknown TLSUsage = 0
TLSServer TLSUsage = 1 << iota
TLSClient
)
//BlockType indicates the serialization format of the key
type BlockType string
//Well-known formats
const (
PKCS1Block BlockType = "RSA PRIVATE KEY"
PKCS8Block BlockType = "PRIVATE KEY"
ECBlock BlockType = "EC PRIVATE KEY"
)
//ParsedPrivateKeyContainer allows common key setting for certs and CSRs
type ParsedPrivateKeyContainer interface {
SetParsedPrivateKey(crypto.Signer, PrivateKeyType, []byte)
}
// CertBlock contains the DER-encoded certificate and the PEM
// block's byte array
type CertBlock struct {
Certificate *x509.Certificate
Bytes []byte
}
// CertBundle contains a key type, a PEM-encoded private key,
// a PEM-encoded certificate, and a string-encoded serial number,
// returned from a successful Issue request
type CertBundle struct {
PrivateKeyType PrivateKeyType `json:"private_key_type" structs:"private_key_type" mapstructure:"private_key_type"`
Certificate string `json:"certificate" structs:"certificate" mapstructure:"certificate"`
IssuingCA string `json:"issuing_ca" structs:"issuing_ca" mapstructure:"issuing_ca"`
CAChain []string `json:"ca_chain" structs:"ca_chain" mapstructure:"ca_chain"`
PrivateKey string `json:"private_key" structs:"private_key" mapstructure:"private_key"`
SerialNumber string `json:"serial_number" structs:"serial_number" mapstructure:"serial_number"`
}
// ParsedCertBundle contains a key type, a DER-encoded private key,
// and a DER-encoded certificate
type ParsedCertBundle struct {
PrivateKeyType PrivateKeyType
PrivateKeyFormat BlockType
PrivateKeyBytes []byte
PrivateKey crypto.Signer
CertificateBytes []byte
Certificate *x509.Certificate
CAChain []*CertBlock
SerialNumber *big.Int
}
// CSRBundle contains a key type, a PEM-encoded private key,
// and a PEM-encoded CSR
type CSRBundle struct {
PrivateKeyType PrivateKeyType `json:"private_key_type" structs:"private_key_type" mapstructure:"private_key_type"`
CSR string `json:"csr" structs:"csr" mapstructure:"csr"`
PrivateKey string `json:"private_key" structs:"private_key" mapstructure:"private_key"`
}
// ParsedCSRBundle contains a key type, a DER-encoded private key,
// and a DER-encoded certificate request
type ParsedCSRBundle struct {
PrivateKeyType PrivateKeyType
PrivateKeyBytes []byte
PrivateKey crypto.Signer
CSRBytes []byte
CSR *x509.CertificateRequest
}
// ToPEMBundle converts a string-based certificate bundle
// to a PEM-based string certificate bundle in trust path
// order, leaf certificate first
func (c *CertBundle) ToPEMBundle() string {
var result []string
if len(c.PrivateKey) > 0 {
result = append(result, c.PrivateKey)
}
if len(c.Certificate) > 0 {
result = append(result, c.Certificate)
}
if len(c.CAChain) > 0 {
result = append(result, c.CAChain...)
}
return strings.Join(result, "\n")
}
// ToParsedCertBundle converts a string-based certificate bundle
// to a byte-based raw certificate bundle
func (c *CertBundle) ToParsedCertBundle() (*ParsedCertBundle, error) {
result := &ParsedCertBundle{}
var err error
var pemBlock *pem.Block
if len(c.PrivateKey) > 0 {
pemBlock, _ = pem.Decode([]byte(c.PrivateKey))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding private key from cert bundle"}
}
result.PrivateKeyBytes = pemBlock.Bytes
result.PrivateKeyFormat = BlockType(strings.TrimSpace(pemBlock.Type))
switch result.PrivateKeyFormat {
case ECBlock:
result.PrivateKeyType, c.PrivateKeyType = ECPrivateKey, ECPrivateKey
case PKCS1Block:
c.PrivateKeyType, result.PrivateKeyType = RSAPrivateKey, RSAPrivateKey
case PKCS8Block:
t, err := getPKCS8Type(pemBlock.Bytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Error getting key type from pkcs#8: %v", err)}
}
result.PrivateKeyType = t
switch t {
case ECPrivateKey:
c.PrivateKeyType = ECPrivateKey
case RSAPrivateKey:
c.PrivateKeyType = RSAPrivateKey
}
default:
return nil, errutil.UserError{fmt.Sprintf("Unsupported key block type: %s", pemBlock.Type)}
}
result.PrivateKey, err = result.getSigner()
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Error getting signer: %s", err)}
}
}
if len(c.Certificate) > 0 {
pemBlock, _ = pem.Decode([]byte(c.Certificate))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding certificate from cert bundle"}
}
result.CertificateBytes = pemBlock.Bytes
result.Certificate, err = x509.ParseCertificate(result.CertificateBytes)
if err != nil {
return nil, errutil.UserError{"Error encountered parsing certificate bytes from raw bundle"}
}
}
switch {
case len(c.CAChain) > 0:
for _, cert := range c.CAChain {
pemBlock, _ := pem.Decode([]byte(cert))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding certificate from cert bundle"}
}
parsedCert, err := x509.ParseCertificate(pemBlock.Bytes)
if err != nil {
return nil, errutil.UserError{"Error encountered parsing certificate bytes from raw bundle"}
}
certBlock := &CertBlock{
Bytes: pemBlock.Bytes,
Certificate: parsedCert,
}
result.CAChain = append(result.CAChain, certBlock)
}
// For backwards compabitibility
case len(c.IssuingCA) > 0:
pemBlock, _ = pem.Decode([]byte(c.IssuingCA))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding ca certificate from cert bundle"}
}
parsedCert, err := x509.ParseCertificate(pemBlock.Bytes)
if err != nil {
return nil, errutil.UserError{"Error encountered parsing certificate bytes from raw bundle3"}
}
result.SerialNumber = result.Certificate.SerialNumber
certBlock := &CertBlock{
Bytes: pemBlock.Bytes,
Certificate: parsedCert,
}
result.CAChain = append(result.CAChain, certBlock)
}
// Populate if it isn't there already
if len(c.SerialNumber) == 0 && len(c.Certificate) > 0 {
c.SerialNumber = GetHexFormatted(result.Certificate.SerialNumber.Bytes(), ":")
}
return result, nil
}
// ToCertBundle converts a byte-based raw DER certificate bundle
// to a PEM-based string certificate bundle
func (p *ParsedCertBundle) ToCertBundle() (*CertBundle, error) {
result := &CertBundle{}
block := pem.Block{
Type: "CERTIFICATE",
}
if p.Certificate != nil {
result.SerialNumber = strings.TrimSpace(GetHexFormatted(p.Certificate.SerialNumber.Bytes(), ":"))
}
if p.CertificateBytes != nil && len(p.CertificateBytes) > 0 {
block.Bytes = p.CertificateBytes
result.Certificate = strings.TrimSpace(string(pem.EncodeToMemory(&block)))
}
for _, caCert := range p.CAChain {
block.Bytes = caCert.Bytes
certificate := strings.TrimSpace(string(pem.EncodeToMemory(&block)))
result.CAChain = append(result.CAChain, certificate)
}
if p.PrivateKeyBytes != nil && len(p.PrivateKeyBytes) > 0 {
block.Type = string(p.PrivateKeyFormat)
block.Bytes = p.PrivateKeyBytes
result.PrivateKeyType = p.PrivateKeyType
//Handle bundle not parsed by us
if block.Type == "" {
switch p.PrivateKeyType {
case ECPrivateKey:
block.Type = string(ECBlock)
case RSAPrivateKey:
block.Type = string(PKCS1Block)
}
}
result.PrivateKey = strings.TrimSpace(string(pem.EncodeToMemory(&block)))
}
return result, nil
}
// Verify checks if the parsed bundle is valid. It validates the public
// key of the certificate to the private key and checks the certificate trust
// chain for path issues.
func (p *ParsedCertBundle) Verify() error {
// If private key exists, check if it matches the public key of cert
if p.PrivateKey != nil && p.Certificate != nil {
equal, err := ComparePublicKeys(p.Certificate.PublicKey, p.PrivateKey.Public())
if err != nil {
return fmt.Errorf("could not compare public and private keys: %s", err)
}
if !equal {
return fmt.Errorf("Public key of certificate does not match private key")
}
}
certPath := p.GetCertificatePath()
if len(certPath) > 1 {
for i, caCert := range certPath[1:] {
if !caCert.Certificate.IsCA {
return fmt.Errorf("certificate %d of certificate chain is not a certificate authority", i+1)
}
if !bytes.Equal(certPath[i].Certificate.AuthorityKeyId, caCert.Certificate.SubjectKeyId) {
return fmt.Errorf("certificate %d of certificate chain ca trust path is incorrect (%s/%s)",
i+1, certPath[i].Certificate.Subject.CommonName, caCert.Certificate.Subject.CommonName)
}
}
}
return nil
}
func (p *ParsedCertBundle) GetCertificatePath() []*CertBlock {
var certPath []*CertBlock
certPath = append(certPath, &CertBlock{
Certificate: p.Certificate,
Bytes: p.CertificateBytes,
})
if len(p.CAChain) > 0 {
// Root CA puts itself in the chain
if p.CAChain[0].Certificate.SerialNumber != p.Certificate.SerialNumber {
certPath = append(certPath, p.CAChain...)
}
}
return certPath
}
// GetSigner returns a crypto.Signer corresponding to the private key
// contained in this ParsedCertBundle. The Signer contains a Public() function
// for getting the corresponding public. The Signer can also be
// type-converted to private keys
func (p *ParsedCertBundle) getSigner() (crypto.Signer, error) {
var signer crypto.Signer
var err error
if p.PrivateKeyBytes == nil || len(p.PrivateKeyBytes) == 0 {
return nil, errutil.UserError{"Given parsed cert bundle does not have private key information"}
}
switch p.PrivateKeyFormat {
case ECBlock:
signer, err = x509.ParseECPrivateKey(p.PrivateKeyBytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Unable to parse CA's private EC key: %s", err)}
}
case PKCS1Block:
signer, err = x509.ParsePKCS1PrivateKey(p.PrivateKeyBytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Unable to parse CA's private RSA key: %s", err)}
}
case PKCS8Block:
if k, err := x509.ParsePKCS8PrivateKey(p.PrivateKeyBytes); err == nil {
switch k := k.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey:
return k.(crypto.Signer), nil
default:
return nil, errutil.UserError{"Found unknown private key type in pkcs#8 wrapping"}
}
}
return nil, errutil.UserError{fmt.Sprintf("Failed to parse pkcs#8 key: %v", err)}
default:
return nil, errutil.UserError{"Unable to determine type of private key; only RSA and EC are supported"}
}
return signer, nil
}
// SetParsedPrivateKey sets the private key parameters on the bundle
func (p *ParsedCertBundle) SetParsedPrivateKey(privateKey crypto.Signer, privateKeyType PrivateKeyType, privateKeyBytes []byte) {
p.PrivateKey = privateKey
p.PrivateKeyType = privateKeyType
p.PrivateKeyBytes = privateKeyBytes
}
func getPKCS8Type(bs []byte) (PrivateKeyType, error) {
k, err := x509.ParsePKCS8PrivateKey(bs)
if err != nil {
return UnknownPrivateKey, errutil.UserError{fmt.Sprintf("Failed to parse pkcs#8 key: %v", err)}
}
switch k.(type) {
case *ecdsa.PrivateKey:
return ECPrivateKey, nil
case *rsa.PrivateKey:
return RSAPrivateKey, nil
default:
return UnknownPrivateKey, errutil.UserError{"Found unknown private key type in pkcs#8 wrapping"}
}
}
// ToParsedCSRBundle converts a string-based CSR bundle
// to a byte-based raw CSR bundle
func (c *CSRBundle) ToParsedCSRBundle() (*ParsedCSRBundle, error) {
result := &ParsedCSRBundle{}
var err error
var pemBlock *pem.Block
if len(c.PrivateKey) > 0 {
pemBlock, _ = pem.Decode([]byte(c.PrivateKey))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding private key from cert bundle"}
}
result.PrivateKeyBytes = pemBlock.Bytes
switch BlockType(pemBlock.Type) {
case ECBlock:
result.PrivateKeyType = ECPrivateKey
case PKCS1Block:
result.PrivateKeyType = RSAPrivateKey
default:
// Try to figure it out and correct
if _, err := x509.ParseECPrivateKey(pemBlock.Bytes); err == nil {
result.PrivateKeyType = ECPrivateKey
c.PrivateKeyType = "ec"
} else if _, err := x509.ParsePKCS1PrivateKey(pemBlock.Bytes); err == nil {
result.PrivateKeyType = RSAPrivateKey
c.PrivateKeyType = "rsa"
} else {
return nil, errutil.UserError{fmt.Sprintf("Unknown private key type in bundle: %s", c.PrivateKeyType)}
}
}
result.PrivateKey, err = result.getSigner()
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Error getting signer: %s", err)}
}
}
if len(c.CSR) > 0 {
pemBlock, _ = pem.Decode([]byte(c.CSR))
if pemBlock == nil {
return nil, errutil.UserError{"Error decoding certificate from cert bundle"}
}
result.CSRBytes = pemBlock.Bytes
result.CSR, err = x509.ParseCertificateRequest(result.CSRBytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Error encountered parsing certificate bytes from raw bundle: %v", err)}
}
}
return result, nil
}
// ToCSRBundle converts a byte-based raw DER certificate bundle
// to a PEM-based string certificate bundle
func (p *ParsedCSRBundle) ToCSRBundle() (*CSRBundle, error) {
result := &CSRBundle{}
block := pem.Block{
Type: "CERTIFICATE REQUEST",
}
if p.CSRBytes != nil && len(p.CSRBytes) > 0 {
block.Bytes = p.CSRBytes
result.CSR = strings.TrimSpace(string(pem.EncodeToMemory(&block)))
}
if p.PrivateKeyBytes != nil && len(p.PrivateKeyBytes) > 0 {
block.Bytes = p.PrivateKeyBytes
switch p.PrivateKeyType {
case RSAPrivateKey:
result.PrivateKeyType = "rsa"
block.Type = "RSA PRIVATE KEY"
case ECPrivateKey:
result.PrivateKeyType = "ec"
block.Type = "EC PRIVATE KEY"
default:
return nil, errutil.InternalError{"Could not determine private key type when creating block"}
}
result.PrivateKey = strings.TrimSpace(string(pem.EncodeToMemory(&block)))
}
return result, nil
}
// GetSigner returns a crypto.Signer corresponding to the private key
// contained in this ParsedCSRBundle. The Signer contains a Public() function
// for getting the corresponding public. The Signer can also be
// type-converted to private keys
func (p *ParsedCSRBundle) getSigner() (crypto.Signer, error) {
var signer crypto.Signer
var err error
if p.PrivateKeyBytes == nil || len(p.PrivateKeyBytes) == 0 {
return nil, errutil.UserError{"Given parsed cert bundle does not have private key information"}
}
switch p.PrivateKeyType {
case ECPrivateKey:
signer, err = x509.ParseECPrivateKey(p.PrivateKeyBytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Unable to parse CA's private EC key: %s", err)}
}
case RSAPrivateKey:
signer, err = x509.ParsePKCS1PrivateKey(p.PrivateKeyBytes)
if err != nil {
return nil, errutil.UserError{fmt.Sprintf("Unable to parse CA's private RSA key: %s", err)}
}
default:
return nil, errutil.UserError{"Unable to determine type of private key; only RSA and EC are supported"}
}
return signer, nil
}
// SetParsedPrivateKey sets the private key parameters on the bundle
func (p *ParsedCSRBundle) SetParsedPrivateKey(privateKey crypto.Signer, privateKeyType PrivateKeyType, privateKeyBytes []byte) {
p.PrivateKey = privateKey
p.PrivateKeyType = privateKeyType
p.PrivateKeyBytes = privateKeyBytes
}
// GetTLSConfig returns a TLS config generally suitable for client
// authentiation. The returned TLS config can be modified slightly
// to be made suitable for a server requiring client authentication;
// specifically, you should set the value of ClientAuth in the returned
// config to match your needs.
func (p *ParsedCertBundle) GetTLSConfig(usage TLSUsage) (*tls.Config, error) {
tlsCert := tls.Certificate{
Certificate: [][]byte{},
}
tlsConfig := &tls.Config{
MinVersion: tls.VersionTLS12,
}
if p.Certificate != nil {
tlsCert.Leaf = p.Certificate
}
if p.PrivateKey != nil {
tlsCert.PrivateKey = p.PrivateKey
}
if p.CertificateBytes != nil && len(p.CertificateBytes) > 0 {
tlsCert.Certificate = append(tlsCert.Certificate, p.CertificateBytes)
}
if len(p.CAChain) > 0 {
for _, cert := range p.CAChain {
tlsCert.Certificate = append(tlsCert.Certificate, cert.Bytes)
}
// Technically we only need one cert, but this doesn't duplicate code
certBundle, err := p.ToCertBundle()
if err != nil {
return nil, fmt.Errorf("Error converting parsed bundle to string bundle when getting TLS config: %s", err)
}
caPool := x509.NewCertPool()
ok := caPool.AppendCertsFromPEM([]byte(certBundle.CAChain[0]))
if !ok {
return nil, fmt.Errorf("Could not append CA certificate")
}
if usage&TLSServer > 0 {
tlsConfig.ClientCAs = caPool
tlsConfig.ClientAuth = tls.VerifyClientCertIfGiven
}
if usage&TLSClient > 0 {
tlsConfig.RootCAs = caPool
}
}
if tlsCert.Certificate != nil && len(tlsCert.Certificate) > 0 {
tlsConfig.Certificates = []tls.Certificate{tlsCert}
tlsConfig.BuildNameToCertificate()
}
return tlsConfig, nil
}
// IssueData is a structure that is suitable for marshaling into a request;
// either via JSON, or into a map[string]interface{} via the structs package
type IssueData struct {
TTL string `json:"ttl" structs:"ttl" mapstructure:"ttl"`
CommonName string `json:"common_name" structs:"common_name" mapstructure:"common_name"`
OU string `json:"ou" structs:"ou" mapstructure:"ou"`
AltNames string `json:"alt_names" structs:"alt_names" mapstructure:"alt_names"`
IPSANs string `json:"ip_sans" structs:"ip_sans" mapstructure:"ip_sans"`
CSR string `json:"csr" structs:"csr" mapstructure:"csr"`
}