open-vault/vault/core.go

2690 lines
83 KiB
Go

package vault
import (
"context"
"crypto/ecdsa"
"crypto/rand"
"crypto/subtle"
"crypto/tls"
"crypto/x509"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"net/http"
"net/url"
"path/filepath"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/errwrap"
log "github.com/hashicorp/go-hclog"
wrapping "github.com/hashicorp/go-kms-wrapping"
aeadwrapper "github.com/hashicorp/go-kms-wrapping/wrappers/aead"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-uuid"
"github.com/hashicorp/vault/api"
"github.com/hashicorp/vault/audit"
"github.com/hashicorp/vault/command/server"
"github.com/hashicorp/vault/helper/metricsutil"
"github.com/hashicorp/vault/helper/namespace"
"github.com/hashicorp/vault/internalshared/reloadutil"
"github.com/hashicorp/vault/sdk/helper/certutil"
"github.com/hashicorp/vault/sdk/helper/consts"
"github.com/hashicorp/vault/sdk/helper/jsonutil"
"github.com/hashicorp/vault/sdk/helper/logging"
"github.com/hashicorp/vault/sdk/helper/mlock"
"github.com/hashicorp/vault/sdk/helper/strutil"
"github.com/hashicorp/vault/sdk/helper/tlsutil"
"github.com/hashicorp/vault/sdk/logical"
"github.com/hashicorp/vault/sdk/physical"
sr "github.com/hashicorp/vault/serviceregistration"
"github.com/hashicorp/vault/shamir"
"github.com/hashicorp/vault/vault/cluster"
"github.com/hashicorp/vault/vault/quotas"
vaultseal "github.com/hashicorp/vault/vault/seal"
"github.com/patrickmn/go-cache"
"google.golang.org/grpc"
)
const (
// CoreLockPath is the path used to acquire a coordinating lock
// for a highly-available deploy.
CoreLockPath = "core/lock"
// The poison pill is used as a check during certain scenarios to indicate
// to standby nodes that they should seal
poisonPillPath = "core/poison-pill"
// coreLeaderPrefix is the prefix used for the UUID that contains
// the currently elected leader.
coreLeaderPrefix = "core/leader/"
// knownPrimaryAddrsPrefix is used to store last-known cluster address
// information for primaries
knownPrimaryAddrsPrefix = "core/primary-addrs/"
// coreKeyringCanaryPath is used as a canary to indicate to replicated
// clusters that they need to perform a rekey operation synchronously; this
// isn't keyring-canary to avoid ignoring it when ignoring core/keyring
coreKeyringCanaryPath = "core/canary-keyring"
)
var (
// ErrAlreadyInit is returned if the core is already
// initialized. This prevents a re-initialization.
ErrAlreadyInit = errors.New("Vault is already initialized")
// ErrNotInit is returned if a non-initialized barrier
// is attempted to be unsealed.
ErrNotInit = errors.New("Vault is not initialized")
// ErrInternalError is returned when we don't want to leak
// any information about an internal error
ErrInternalError = errors.New("internal error")
// ErrHANotEnabled is returned if the operation only makes sense
// in an HA setting
ErrHANotEnabled = errors.New("Vault is not configured for highly-available mode")
// manualStepDownSleepPeriod is how long to sleep after a user-initiated
// step down of the active node, to prevent instantly regrabbing the lock.
// It's var not const so that tests can manipulate it.
manualStepDownSleepPeriod = 10 * time.Second
// Functions only in the Enterprise version
enterprisePostUnseal = enterprisePostUnsealImpl
enterprisePreSeal = enterprisePreSealImpl
enterpriseSetupFilteredPaths = enterpriseSetupFilteredPathsImpl
enterpriseSetupQuotas = enterpriseSetupQuotasImpl
startReplication = startReplicationImpl
stopReplication = stopReplicationImpl
LastWAL = lastWALImpl
LastPerformanceWAL = lastPerformanceWALImpl
PerformanceMerkleRoot = merkleRootImpl
DRMerkleRoot = merkleRootImpl
LastRemoteWAL = lastRemoteWALImpl
WaitUntilWALShipped = waitUntilWALShippedImpl
)
// NonFatalError is an error that can be returned during NewCore that should be
// displayed but not cause a program exit
type NonFatalError struct {
Err error
}
func (e *NonFatalError) WrappedErrors() []error {
return []error{e.Err}
}
func (e *NonFatalError) Error() string {
return e.Err.Error()
}
// NewNonFatalError returns a new non-fatal error.
func NewNonFatalError(err error) *NonFatalError {
return &NonFatalError{Err: err}
}
// IsFatalError returns true if the given error is a fatal error.
func IsFatalError(err error) bool {
return !errwrap.ContainsType(err, new(NonFatalError))
}
// ErrInvalidKey is returned if there is a user-based error with a provided
// unseal key. This will be shown to the user, so should not contain
// information that is sensitive.
type ErrInvalidKey struct {
Reason string
}
func (e *ErrInvalidKey) Error() string {
return fmt.Sprintf("invalid key: %v", e.Reason)
}
type RegisterAuthFunc func(context.Context, time.Duration, string, *logical.Auth) error
type activeAdvertisement struct {
RedirectAddr string `json:"redirect_addr"`
ClusterAddr string `json:"cluster_addr,omitempty"`
ClusterCert []byte `json:"cluster_cert,omitempty"`
ClusterKeyParams *certutil.ClusterKeyParams `json:"cluster_key_params,omitempty"`
}
type unlockInformation struct {
Parts [][]byte
Nonce string
}
type raftInformation struct {
challenge *wrapping.EncryptedBlobInfo
leaderClient *api.Client
leaderBarrierConfig *SealConfig
nonVoter bool
joinInProgress bool
}
type migrationInformation struct {
// seal to use during a migration operation. It is the
// seal we're migrating *from*.
seal Seal
// unsealKey was the unseal key provided for the migration seal.
// This will be set as the recovery key when migrating from shamir to auto-seal.
// We don't need to do anything with it when migrating auto->shamir because
// we don't store the shamir combined key for shamir seals, nor when
// migrating auto->auto because then the recovery key doesn't change.
unsealKey []byte
}
// Core is used as the central manager of Vault activity. It is the primary point of
// interface for API handlers and is responsible for managing the logical and physical
// backends, router, security barrier, and audit trails.
type Core struct {
entCore
// The registry of builtin plugins is passed in here as an interface because
// if it's used directly, it results in import cycles.
builtinRegistry BuiltinRegistry
// N.B.: This is used to populate a dev token down replication, as
// otherwise, after replication is started, a dev would have to go through
// the generate-root process simply to talk to the new follower cluster.
devToken string
// HABackend may be available depending on the physical backend
ha physical.HABackend
// storageType is the the storage type set in the storage configuration
storageType string
// redirectAddr is the address we advertise as leader if held
redirectAddr string
// clusterAddr is the address we use for clustering
clusterAddr *atomic.Value
// physical backend is the un-trusted backend with durable data
physical physical.Backend
// serviceRegistration is the ServiceRegistration network
serviceRegistration sr.ServiceRegistration
// underlyingPhysical will always point to the underlying backend
// implementation. This is an un-trusted backend with durable data
underlyingPhysical physical.Backend
// seal is our seal, for seal configuration information
seal Seal
// raftJoinDoneCh is used by the raft retry join routine to inform unseal process
// that the join is complete
raftJoinDoneCh chan struct{}
// postUnsealStarted informs the raft retry join routine that unseal key
// validation is completed and post unseal has started so that it can complete
// the join process when Shamir seal is in use
postUnsealStarted *uint32
// raftInfo will contain information required for this node to join as a
// peer to an existing raft cluster
raftInfo *raftInformation
// migrationInfo is used during (and possibly after) a seal migration.
// This contains information about the seal we are migrating *from*. Even
// post seal migration, provided the old seal is still in configuration
// migrationInfo will be populated, which on enterprise may be necessary for
// seal rewrap.
migrationInfo *migrationInformation
sealMigrationDone *uint32
// barrier is the security barrier wrapping the physical backend
barrier SecurityBarrier
// router is responsible for managing the mount points for logical backends.
router *Router
// logicalBackends is the mapping of backends to use for this core
logicalBackends map[string]logical.Factory
// credentialBackends is the mapping of backends to use for this core
credentialBackends map[string]logical.Factory
// auditBackends is the mapping of backends to use for this core
auditBackends map[string]audit.Factory
// stateLock protects mutable state
stateLock DeadlockRWMutex
sealed *uint32
standby bool
perfStandby bool
standbyDoneCh chan struct{}
standbyStopCh *atomic.Value
manualStepDownCh chan struct{}
keepHALockOnStepDown *uint32
heldHALock physical.Lock
// shutdownDoneCh is used to notify when Shutdown() completes
shutdownDoneCh chan struct{}
// unlockInfo has the keys provided to Unseal until the threshold number of parts is available, as well as the operation nonce
unlockInfo *unlockInformation
// generateRootProgress holds the shares until we reach enough
// to verify the master key
generateRootConfig *GenerateRootConfig
generateRootProgress [][]byte
generateRootLock sync.Mutex
// These variables holds the config and shares we have until we reach
// enough to verify the appropriate master key. Note that the same lock is
// used; this isn't time-critical so this shouldn't be a problem.
barrierRekeyConfig *SealConfig
recoveryRekeyConfig *SealConfig
rekeyLock sync.RWMutex
// mounts is loaded after unseal since it is a protected
// configuration
mounts *MountTable
// mountsLock is used to ensure that the mounts table does not
// change underneath a calling function
mountsLock sync.RWMutex
// auth is loaded after unseal since it is a protected
// configuration
auth *MountTable
// authLock is used to ensure that the auth table does not
// change underneath a calling function
authLock sync.RWMutex
// audit is loaded after unseal since it is a protected
// configuration
audit *MountTable
// auditLock is used to ensure that the audit table does not
// change underneath a calling function
auditLock sync.RWMutex
// auditBroker is used to ingest the audit events and fan
// out into the configured audit backends
auditBroker *AuditBroker
// auditedHeaders is used to configure which http headers
// can be output in the audit logs
auditedHeaders *AuditedHeadersConfig
// systemBackend is the backend which is used to manage internal operations
systemBackend *SystemBackend
// cubbyholeBackend is the backend which manages the per-token storage
cubbyholeBackend *CubbyholeBackend
// systemBarrierView is the barrier view for the system backend
systemBarrierView *BarrierView
// expiration manager is used for managing LeaseIDs,
// renewal, expiration and revocation
expiration *ExpirationManager
// rollback manager is used to run rollbacks periodically
rollback *RollbackManager
// policy store is used to manage named ACL policies
policyStore *PolicyStore
// token store is used to manage authentication tokens
tokenStore *TokenStore
// identityStore is used to manage client entities
identityStore *IdentityStore
// activityLog is used to track active client count
activityLog *ActivityLog
// metricsCh is used to stop the metrics streaming
metricsCh chan struct{}
// metricsMutex is used to prevent a race condition between
// metrics emission and sealing leading to a nil pointer
metricsMutex sync.Mutex
// metricSink is the destination for all metrics that have
// a cluster label.
metricSink *metricsutil.ClusterMetricSink
defaultLeaseTTL time.Duration
maxLeaseTTL time.Duration
// baseLogger is used to avoid ResetNamed as it strips useful prefixes in
// e.g. testing
baseLogger log.Logger
logger log.Logger
// Disables the trace display for Sentinel checks
sentinelTraceDisabled bool
// cachingDisabled indicates whether caches are disabled
cachingDisabled bool
// Cache stores the actual cache; we always have this but may bypass it if
// disabled
physicalCache physical.ToggleablePurgemonster
// reloadFuncs is a map containing reload functions
reloadFuncs map[string][]reloadutil.ReloadFunc
// reloadFuncsLock controls access to the funcs
reloadFuncsLock sync.RWMutex
// wrappingJWTKey is the key used for generating JWTs containing response
// wrapping information
wrappingJWTKey *ecdsa.PrivateKey
//
// Cluster information
//
// Name
clusterName string
// Specific cipher suites to use for clustering, if any
clusterCipherSuites []uint16
// Used to modify cluster parameters
clusterParamsLock sync.RWMutex
// The private key stored in the barrier used for establishing
// mutually-authenticated connections between Vault cluster members
localClusterPrivateKey *atomic.Value
// The local cluster cert
localClusterCert *atomic.Value
// The parsed form of the local cluster cert
localClusterParsedCert *atomic.Value
// The TCP addresses we should use for clustering
clusterListenerAddrs []*net.TCPAddr
// The handler to use for request forwarding
clusterHandler http.Handler
// Write lock used to ensure that we don't have multiple connections adjust
// this value at the same time
requestForwardingConnectionLock sync.RWMutex
// Lock for the leader values, ensuring we don't run the parts of Leader()
// that change things concurrently
leaderParamsLock sync.RWMutex
// Current cluster leader values
clusterLeaderParams *atomic.Value
// Info on cluster members
clusterPeerClusterAddrsCache *cache.Cache
// The context for the client
rpcClientConnContext context.Context
// The function for canceling the client connection
rpcClientConnCancelFunc context.CancelFunc
// The grpc ClientConn for RPC calls
rpcClientConn *grpc.ClientConn
// The grpc forwarding client
rpcForwardingClient *forwardingClient
// The UUID used to hold the leader lock. Only set on active node
leaderUUID string
// CORS Information
corsConfig *CORSConfig
// The active set of upstream cluster addresses; stored via the Echo
// mechanism, loaded by the balancer
atomicPrimaryClusterAddrs *atomic.Value
atomicPrimaryFailoverAddrs *atomic.Value
// replicationState keeps the current replication state cached for quick
// lookup; activeNodeReplicationState stores the active value on standbys
replicationState *uint32
activeNodeReplicationState *uint32
// uiConfig contains UI configuration
uiConfig *UIConfig
// rawEnabled indicates whether the Raw endpoint is enabled
rawEnabled bool
// pluginDirectory is the location vault will look for plugin binaries
pluginDirectory string
// pluginCatalog is used to manage plugin configurations
pluginCatalog *PluginCatalog
enableMlock bool
// This can be used to trigger operations to stop running when Vault is
// going to be shut down, stepped down, or sealed
activeContext context.Context
activeContextCancelFunc *atomic.Value
// Stores the sealunwrapper for downgrade needs
sealUnwrapper physical.Backend
// unsealwithStoredKeysLock is a mutex that prevents multiple processes from
// unsealing with stored keys are the same time.
unsealWithStoredKeysLock sync.Mutex
// Stores any funcs that should be run on successful postUnseal
postUnsealFuncs []func()
// Stores any funcs that should be run on successful barrier unseal in
// recovery mode
postRecoveryUnsealFuncs []func() error
// replicationFailure is used to mark when replication has entered an
// unrecoverable failure.
replicationFailure *uint32
// disablePerfStanby is used to tell a standby not to attempt to become a
// perf standby
disablePerfStandby bool
licensingStopCh chan struct{}
// Stores loggers so we can reset the level
allLoggers []log.Logger
allLoggersLock sync.RWMutex
// Can be toggled atomically to cause the core to never try to become
// active, or give up active as soon as it gets it
neverBecomeActive *uint32
// loadCaseSensitiveIdentityStore enforces the loading of identity store
// artifacts in a case sensitive manner. To be used only in testing.
loadCaseSensitiveIdentityStore bool
// clusterListener starts up and manages connections on the cluster ports
clusterListener *atomic.Value
// Telemetry objects
metricsHelper *metricsutil.MetricsHelper
// Stores request counters
counters counters
// Stores the raft applied index for standby nodes
raftFollowerStates *raftFollowerStates
// Stop channel for raft TLS rotations
raftTLSRotationStopCh chan struct{}
// Stores the pending peers we are waiting to give answers
pendingRaftPeers *sync.Map
// rawConfig stores the config as-is from the provided server configuration.
rawConfig *atomic.Value
coreNumber int
// secureRandomReader is the reader used for CSP operations
secureRandomReader io.Reader
recoveryMode bool
clusterNetworkLayer cluster.NetworkLayer
// PR1103disabled is used to test upgrade workflows: when set to true,
// the correct behaviour for namespaced cubbyholes is disabled, so we
// can test an upgrade to a version that includes the fixes from
// https://github.com/hashicorp/vault-enterprise/pull/1103
PR1103disabled bool
quotaManager *quotas.Manager
clusterHeartbeatInterval time.Duration
activityLogConfig ActivityLogCoreConfig
// activeTime is set on active nodes indicating the time at which this node
// became active.
activeTime time.Time
// KeyRotateGracePeriod is how long we allow an upgrade path
// for standby instances before we delete the upgrade keys
keyRotateGracePeriod *int64
}
// CoreConfig is used to parameterize a core
type CoreConfig struct {
entCoreConfig
DevToken string
BuiltinRegistry BuiltinRegistry
LogicalBackends map[string]logical.Factory
CredentialBackends map[string]logical.Factory
AuditBackends map[string]audit.Factory
Physical physical.Backend
StorageType string
// May be nil, which disables HA operations
HAPhysical physical.HABackend
ServiceRegistration sr.ServiceRegistration
// Seal is the configured seal, or if none is configured explicitly, a
// shamir seal. In migration scenarios this is the new seal.
Seal Seal
// Unwrap seal is the optional seal marked "disabled"; this is the old
// seal in migration scenarios.
UnwrapSeal Seal
SecureRandomReader io.Reader
Logger log.Logger
// Disables the trace display for Sentinel checks
DisableSentinelTrace bool
// Disables the LRU cache on the physical backend
DisableCache bool
// Disables mlock syscall
DisableMlock bool
// Custom cache size for the LRU cache on the physical backend, or zero for default
CacheSize int
// Set as the leader address for HA
RedirectAddr string
// Set as the cluster address for HA
ClusterAddr string
DefaultLeaseTTL time.Duration
MaxLeaseTTL time.Duration
ClusterName string
ClusterCipherSuites string
EnableUI bool
// Enable the raw endpoint
EnableRaw bool
PluginDirectory string
DisableSealWrap bool
RawConfig *server.Config
ReloadFuncs *map[string][]reloadutil.ReloadFunc
ReloadFuncsLock *sync.RWMutex
// Licensing
LicensingConfig *LicensingConfig
// Don't set this unless in dev mode, ideally only when using inmem
DevLicenseDuration time.Duration
DisablePerformanceStandby bool
DisableIndexing bool
DisableKeyEncodingChecks bool
AllLoggers []log.Logger
// Telemetry objects
MetricsHelper *metricsutil.MetricsHelper
MetricSink *metricsutil.ClusterMetricSink
CounterSyncInterval time.Duration
RecoveryMode bool
ClusterNetworkLayer cluster.NetworkLayer
ClusterHeartbeatInterval time.Duration
// Activity log controls
ActivityLogConfig ActivityLogCoreConfig
}
// GetServiceRegistration returns the config's ServiceRegistration, or nil if it does
// not exist.
func (c *CoreConfig) GetServiceRegistration() sr.ServiceRegistration {
// Check whether there is a ServiceRegistration explicitly configured
if c.ServiceRegistration != nil {
return c.ServiceRegistration
}
// Check if HAPhysical is configured and implements ServiceRegistration
if c.HAPhysical != nil && c.HAPhysical.HAEnabled() {
if disc, ok := c.HAPhysical.(sr.ServiceRegistration); ok {
return disc
}
}
// No service discovery is available.
return nil
}
// NewCore is used to construct a new core
func NewCore(conf *CoreConfig) (*Core, error) {
if conf.HAPhysical != nil && conf.HAPhysical.HAEnabled() {
if conf.RedirectAddr == "" {
return nil, fmt.Errorf("missing API address, please set in configuration or via environment")
}
}
if conf.DefaultLeaseTTL == 0 {
conf.DefaultLeaseTTL = defaultLeaseTTL
}
if conf.MaxLeaseTTL == 0 {
conf.MaxLeaseTTL = maxLeaseTTL
}
if conf.DefaultLeaseTTL > conf.MaxLeaseTTL {
return nil, fmt.Errorf("cannot have DefaultLeaseTTL larger than MaxLeaseTTL")
}
// Validate the advertise addr if its given to us
if conf.RedirectAddr != "" {
u, err := url.Parse(conf.RedirectAddr)
if err != nil {
return nil, errwrap.Wrapf("redirect address is not valid url: {{err}}", err)
}
if u.Scheme == "" {
return nil, fmt.Errorf("redirect address must include scheme (ex. 'http')")
}
}
// Make a default logger if not provided
if conf.Logger == nil {
conf.Logger = logging.NewVaultLogger(log.Trace)
}
// Make a default metric sink if not provided
if conf.MetricSink == nil {
conf.MetricSink = metricsutil.BlackholeSink()
}
// Instantiate a non-nil raw config if none is provided
if conf.RawConfig == nil {
conf.RawConfig = new(server.Config)
}
syncInterval := conf.CounterSyncInterval
if syncInterval.Nanoseconds() == 0 {
syncInterval = 30 * time.Second
}
// secureRandomReader cannot be nil
if conf.SecureRandomReader == nil {
conf.SecureRandomReader = rand.Reader
}
clusterHeartbeatInterval := conf.ClusterHeartbeatInterval
if clusterHeartbeatInterval == 0 {
clusterHeartbeatInterval = 5 * time.Second
}
// Setup the core
c := &Core{
entCore: entCore{},
devToken: conf.DevToken,
physical: conf.Physical,
serviceRegistration: conf.GetServiceRegistration(),
underlyingPhysical: conf.Physical,
storageType: conf.StorageType,
redirectAddr: conf.RedirectAddr,
clusterAddr: new(atomic.Value),
clusterListener: new(atomic.Value),
seal: conf.Seal,
router: NewRouter(),
sealed: new(uint32),
sealMigrationDone: new(uint32),
standby: true,
standbyStopCh: new(atomic.Value),
baseLogger: conf.Logger,
logger: conf.Logger.Named("core"),
defaultLeaseTTL: conf.DefaultLeaseTTL,
maxLeaseTTL: conf.MaxLeaseTTL,
sentinelTraceDisabled: conf.DisableSentinelTrace,
cachingDisabled: conf.DisableCache,
clusterName: conf.ClusterName,
clusterNetworkLayer: conf.ClusterNetworkLayer,
clusterPeerClusterAddrsCache: cache.New(3*clusterHeartbeatInterval, time.Second),
enableMlock: !conf.DisableMlock,
rawEnabled: conf.EnableRaw,
shutdownDoneCh: make(chan struct{}),
replicationState: new(uint32),
atomicPrimaryClusterAddrs: new(atomic.Value),
atomicPrimaryFailoverAddrs: new(atomic.Value),
localClusterPrivateKey: new(atomic.Value),
localClusterCert: new(atomic.Value),
localClusterParsedCert: new(atomic.Value),
activeNodeReplicationState: new(uint32),
keepHALockOnStepDown: new(uint32),
replicationFailure: new(uint32),
disablePerfStandby: true,
activeContextCancelFunc: new(atomic.Value),
allLoggers: conf.AllLoggers,
builtinRegistry: conf.BuiltinRegistry,
neverBecomeActive: new(uint32),
clusterLeaderParams: new(atomic.Value),
metricsHelper: conf.MetricsHelper,
metricSink: conf.MetricSink,
secureRandomReader: conf.SecureRandomReader,
rawConfig: new(atomic.Value),
counters: counters{
requests: new(uint64),
syncInterval: syncInterval,
},
recoveryMode: conf.RecoveryMode,
postUnsealStarted: new(uint32),
raftJoinDoneCh: make(chan struct{}),
clusterHeartbeatInterval: clusterHeartbeatInterval,
activityLogConfig: conf.ActivityLogConfig,
keyRotateGracePeriod: new(int64),
}
c.standbyStopCh.Store(make(chan struct{}))
atomic.StoreUint32(c.sealed, 1)
c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 0, nil)
c.allLoggers = append(c.allLoggers, c.logger)
c.router.logger = c.logger.Named("router")
c.allLoggers = append(c.allLoggers, c.router.logger)
c.SetConfig(conf.RawConfig)
atomic.StoreUint32(c.replicationState, uint32(consts.ReplicationDRDisabled|consts.ReplicationPerformanceDisabled))
c.localClusterCert.Store(([]byte)(nil))
c.localClusterParsedCert.Store((*x509.Certificate)(nil))
c.localClusterPrivateKey.Store((*ecdsa.PrivateKey)(nil))
c.clusterLeaderParams.Store((*ClusterLeaderParams)(nil))
c.clusterAddr.Store(conf.ClusterAddr)
c.activeContextCancelFunc.Store((context.CancelFunc)(nil))
atomic.StoreInt64(c.keyRotateGracePeriod, int64(2*time.Minute))
switch conf.ClusterCipherSuites {
case "tls13", "tls12":
// Do nothing, let Go use the default
case "":
// Add in forward compatible TLS 1.3 suites, followed by handpicked 1.2 suites
c.clusterCipherSuites = []uint16{
// 1.3
tls.TLS_AES_128_GCM_SHA256,
tls.TLS_AES_256_GCM_SHA384,
tls.TLS_CHACHA20_POLY1305_SHA256,
// 1.2
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
}
default:
suites, err := tlsutil.ParseCiphers(conf.ClusterCipherSuites)
if err != nil {
return nil, errwrap.Wrapf("error parsing cluster cipher suites: {{err}}", err)
}
c.clusterCipherSuites = suites
}
// Load CORS config and provide a value for the core field.
c.corsConfig = &CORSConfig{
core: c,
Enabled: new(uint32),
}
if c.seal == nil {
c.seal = NewDefaultSeal(&vaultseal.Access{
Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{
Logger: c.logger.Named("shamir"),
}),
})
}
c.seal.SetCore(c)
if err := coreInit(c, conf); err != nil {
return nil, err
}
if !conf.DisableMlock {
// Ensure our memory usage is locked into physical RAM
if err := mlock.LockMemory(); err != nil {
return nil, fmt.Errorf(
"Failed to lock memory: %v\n\n"+
"This usually means that the mlock syscall is not available.\n"+
"Vault uses mlock to prevent memory from being swapped to\n"+
"disk. This requires root privileges as well as a machine\n"+
"that supports mlock. Please enable mlock on your system or\n"+
"disable Vault from using it. To disable Vault from using it,\n"+
"set the `disable_mlock` configuration option in your configuration\n"+
"file.",
err)
}
}
var err error
// Construct a new AES-GCM barrier
c.barrier, err = NewAESGCMBarrier(c.physical)
if err != nil {
return nil, errwrap.Wrapf("barrier setup failed: {{err}}", err)
}
// We create the funcs here, then populate the given config with it so that
// the caller can share state
conf.ReloadFuncsLock = &c.reloadFuncsLock
c.reloadFuncsLock.Lock()
c.reloadFuncs = make(map[string][]reloadutil.ReloadFunc)
c.reloadFuncsLock.Unlock()
conf.ReloadFuncs = &c.reloadFuncs
// All the things happening below this are not required in
// recovery mode
if c.recoveryMode {
return c, nil
}
if conf.PluginDirectory != "" {
c.pluginDirectory, err = filepath.Abs(conf.PluginDirectory)
if err != nil {
return nil, errwrap.Wrapf("core setup failed, could not verify plugin directory: {{err}}", err)
}
}
createSecondaries(c, conf)
if conf.HAPhysical != nil && conf.HAPhysical.HAEnabled() {
c.ha = conf.HAPhysical
}
logicalBackends := make(map[string]logical.Factory)
for k, f := range conf.LogicalBackends {
logicalBackends[k] = f
}
_, ok := logicalBackends["kv"]
if !ok {
logicalBackends["kv"] = PassthroughBackendFactory
}
logicalBackends["cubbyhole"] = CubbyholeBackendFactory
logicalBackends[systemMountType] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) {
sysBackendLogger := conf.Logger.Named("system")
c.AddLogger(sysBackendLogger)
b := NewSystemBackend(c, sysBackendLogger)
if err := b.Setup(ctx, config); err != nil {
return nil, err
}
return b, nil
}
logicalBackends["identity"] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) {
identityLogger := conf.Logger.Named("identity")
c.AddLogger(identityLogger)
return NewIdentityStore(ctx, c, config, identityLogger)
}
addExtraLogicalBackends(c, logicalBackends)
c.logicalBackends = logicalBackends
credentialBackends := make(map[string]logical.Factory)
for k, f := range conf.CredentialBackends {
credentialBackends[k] = f
}
credentialBackends["token"] = func(ctx context.Context, config *logical.BackendConfig) (logical.Backend, error) {
tsLogger := conf.Logger.Named("token")
c.AddLogger(tsLogger)
return NewTokenStore(ctx, tsLogger, c, config)
}
addExtraCredentialBackends(c, credentialBackends)
c.credentialBackends = credentialBackends
auditBackends := make(map[string]audit.Factory)
for k, f := range conf.AuditBackends {
auditBackends[k] = f
}
c.auditBackends = auditBackends
uiStoragePrefix := systemBarrierPrefix + "ui"
c.uiConfig = NewUIConfig(conf.EnableUI, physical.NewView(c.physical, uiStoragePrefix), NewBarrierView(c.barrier, uiStoragePrefix))
c.clusterListener.Store((*cluster.Listener)(nil))
quotasLogger := conf.Logger.Named("quotas")
c.allLoggers = append(c.allLoggers, quotasLogger)
c.quotaManager, err = quotas.NewManager(quotasLogger, c.quotaLeaseWalker, c.metricSink)
if err != nil {
return nil, err
}
err = c.adjustForSealMigration(conf.UnwrapSeal)
if err != nil {
return nil, err
}
return c, nil
}
// Shutdown is invoked when the Vault instance is about to be terminated. It
// should not be accessible as part of an API call as it will cause an availability
// problem. It is only used to gracefully quit in the case of HA so that failover
// happens as quickly as possible.
func (c *Core) Shutdown() error {
c.logger.Debug("shutdown called")
err := c.sealInternal()
c.stateLock.Lock()
defer c.stateLock.Unlock()
if c.shutdownDoneCh != nil {
close(c.shutdownDoneCh)
c.shutdownDoneCh = nil
}
return err
}
// ShutdownDone returns a channel that will be closed after Shutdown completes
func (c *Core) ShutdownDone() <-chan struct{} {
return c.shutdownDoneCh
}
// CORSConfig returns the current CORS configuration
func (c *Core) CORSConfig() *CORSConfig {
return c.corsConfig
}
func (c *Core) GetContext() (context.Context, context.CancelFunc) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
return context.WithCancel(namespace.RootContext(c.activeContext))
}
// Sealed checks if the Vault is current sealed
func (c *Core) Sealed() bool {
return atomic.LoadUint32(c.sealed) == 1
}
// SecretProgress returns the number of keys provided so far
func (c *Core) SecretProgress() (int, string) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
switch c.unlockInfo {
case nil:
return 0, ""
default:
return len(c.unlockInfo.Parts), c.unlockInfo.Nonce
}
}
// ResetUnsealProcess removes the current unlock parts from memory, to reset
// the unsealing process
func (c *Core) ResetUnsealProcess() {
c.stateLock.Lock()
defer c.stateLock.Unlock()
c.unlockInfo = nil
}
func (c *Core) UnsealMigrate(key []byte) (bool, error) {
err := c.unsealFragment(key, true)
return !c.Sealed(), err
}
// Unseal is used to provide one of the key parts to unseal the Vault.
func (c *Core) Unseal(key []byte) (bool, error) {
err := c.unsealFragment(key, false)
return !c.Sealed(), err
}
// unseal takes a key fragment and attempts to use it to unseal Vault.
// Vault may remain unsealed afterwards even when no error is returned,
// depending on whether enough key fragments were provided to meet the
// target threshold.
//
// The provided key should be a recovery key fragment if the seal
// is an autoseal, or a regular seal key fragment for shamir. In
// migration scenarios "seal" in the preceding sentance refers to
// the migration seal in c.migrationInfo.seal.
//
// We use getUnsealKey to work out if we have enough fragments,
// and if we don't have enough we return early. Otherwise we get
// back the combined key.
//
// For legacy shamir the combined key *is* the master key. For
// shamir the combined key is used to decrypt the master key
// read from storage. For autoseal the combined key isn't used
// except to verify that the stored recovery key matches.
//
// In migration scenarios a side-effect of unsealing is that
// the members of c.migrationInfo are populated (excluding
// .seal, which must already be populated before unseal is called.)
func (c *Core) unsealFragment(key []byte, migrate bool) error {
defer metrics.MeasureSince([]string{"core", "unseal"}, time.Now())
c.stateLock.Lock()
defer c.stateLock.Unlock()
ctx := context.Background()
if migrate && c.migrationInfo == nil {
return fmt.Errorf("can't perform a seal migration, no migration seal found")
}
if migrate && c.isRaftUnseal() {
return fmt.Errorf("can't perform a seal migration while joining a raft cluster")
}
if !migrate && c.migrationInfo != nil {
done, err := c.sealMigrated(ctx)
if err != nil {
return fmt.Errorf("error checking to see if seal is migrated: %w", err)
}
if !done {
return fmt.Errorf("migrate option not provided and seal migration is pending")
}
}
c.logger.Debug("unseal key supplied", "migrate", migrate)
// Explicitly check for init status. This also checks if the seal
// configuration is valid (i.e. non-nil).
init, err := c.Initialized(ctx)
if err != nil {
return err
}
if !init && !c.isRaftUnseal() {
return ErrNotInit
}
// Verify the key length
min, max := c.barrier.KeyLength()
max += shamir.ShareOverhead
if len(key) < min {
return &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)}
}
if len(key) > max {
return &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)}
}
// Check if already unsealed
if !c.Sealed() {
return nil
}
sealToUse := c.seal
if migrate {
c.logger.Info("unsealing using migration seal")
sealToUse = c.migrationInfo.seal
}
newKey, err := c.recordUnsealPart(key)
if !newKey || err != nil {
return err
}
// getUnsealKey returns either a recovery key (in the case of an autoseal)
// or a master key (legacy shamir) or an unseal key (new-style shamir).
combinedKey, err := c.getUnsealKey(ctx, sealToUse)
if err != nil || combinedKey == nil {
return err
}
if migrate {
c.migrationInfo.unsealKey = combinedKey
}
if c.isRaftUnseal() {
return c.unsealWithRaft(combinedKey)
}
masterKey, err := c.unsealKeyToMasterKeyPreUnseal(ctx, sealToUse, combinedKey)
if err != nil {
return err
}
return c.unsealInternal(ctx, masterKey)
}
func (c *Core) unsealWithRaft(combinedKey []byte) error {
ctx := context.Background()
if c.seal.BarrierType() == wrapping.Shamir {
// If this is a legacy shamir seal this serves no purpose but it
// doesn't hurt.
err := c.seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(combinedKey)
if err != nil {
return err
}
}
switch c.raftInfo.joinInProgress {
case true:
// JoinRaftCluster is already trying to perform a join based on retry_join configuration.
// Inform that routine that unseal key validation is complete so that it can continue to
// try and join possible leader nodes, and wait for it to complete.
atomic.StoreUint32(c.postUnsealStarted, 1)
c.logger.Info("waiting for raft retry join process to complete")
<-c.raftJoinDoneCh
default:
// This is the case for manual raft join. Send the answer to the leader node and
// wait for data to start streaming in.
if err := c.joinRaftSendAnswer(ctx, c.seal.GetAccess(), c.raftInfo); err != nil {
return err
}
// Reset the state
c.raftInfo = nil
}
go func() {
var masterKey []byte
keyringFound := false
// Wait until we at least have the keyring before we attempt to
// unseal the node.
for {
if !keyringFound {
keys, err := c.underlyingPhysical.List(ctx, keyringPrefix)
if err != nil {
c.logger.Error("failed to list physical keys", "error", err)
return
}
if strutil.StrListContains(keys, "keyring") {
keyringFound = true
}
}
if keyringFound && len(masterKey) == 0 {
var err error
masterKey, err = c.unsealKeyToMasterKeyPreUnseal(ctx, c.seal, combinedKey)
if err != nil {
c.logger.Error("failed to read master key", "error", err)
return
}
}
if keyringFound && len(masterKey) > 0 {
err := c.unsealInternal(ctx, masterKey)
if err != nil {
c.logger.Error("failed to unseal", "error", err)
}
return
}
time.Sleep(1 * time.Second)
}
}()
return nil
}
// recordUnsealPart takes in a key fragment, and returns true if it's a new fragment.
func (c *Core) recordUnsealPart(key []byte) (bool, error) {
// Check if we already have this piece
if c.unlockInfo != nil {
for _, existing := range c.unlockInfo.Parts {
if subtle.ConstantTimeCompare(existing, key) == 1 {
return false, nil
}
}
} else {
uuid, err := uuid.GenerateUUID()
if err != nil {
return false, err
}
c.unlockInfo = &unlockInformation{
Nonce: uuid,
}
}
// Store this key
c.unlockInfo.Parts = append(c.unlockInfo.Parts, key)
return true, nil
}
// getUnsealKey uses key fragments recorded by recordUnsealPart and
// returns the combined key if the key share threshold is met.
// If the key fragments are part of a recovery key, also verify that
// it matches the stored recovery key on disk.
func (c *Core) getUnsealKey(ctx context.Context, seal Seal) ([]byte, error) {
var config *SealConfig
var err error
switch {
case seal.RecoveryKeySupported():
config, err = seal.RecoveryConfig(ctx)
case c.isRaftUnseal():
// Ignore follower's seal config and refer to leader's barrier
// configuration.
config = c.raftInfo.leaderBarrierConfig
default:
config, err = seal.BarrierConfig(ctx)
}
if err != nil {
return nil, err
}
// Check if we don't have enough keys to unlock, proceed through the rest of
// the call only if we have met the threshold
if len(c.unlockInfo.Parts) < config.SecretThreshold {
if c.logger.IsDebug() {
c.logger.Debug("cannot unseal, not enough keys", "keys", len(c.unlockInfo.Parts), "threshold", config.SecretThreshold, "nonce", c.unlockInfo.Nonce)
}
return nil, nil
}
defer func() {
c.unlockInfo = nil
}()
// Recover the split key. recoveredKey is the shamir combined
// key, or the single provided key if the threshold is 1.
var unsealKey []byte
if config.SecretThreshold == 1 {
unsealKey = make([]byte, len(c.unlockInfo.Parts[0]))
copy(unsealKey, c.unlockInfo.Parts[0])
} else {
unsealKey, err = shamir.Combine(c.unlockInfo.Parts)
if err != nil {
return nil, errwrap.Wrapf("failed to compute combined key: {{err}}", err)
}
}
if seal.RecoveryKeySupported() {
if err := seal.VerifyRecoveryKey(ctx, unsealKey); err != nil {
return nil, err
}
}
return unsealKey, nil
}
// sealMigrated must be called with the stateLock held. It returns true if
// the seal configured in HCL and the seal configured in storage match.
// For the auto->auto same seal migration scenario, it will return false even
// if the preceding conditions are true but we cannot decrypt the master key
// in storage using the configured seal.
func (c *Core) sealMigrated(ctx context.Context) (bool, error) {
if atomic.LoadUint32(c.sealMigrationDone) == 1 {
return true, nil
}
existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx)
if err != nil {
return false, err
}
if existBarrierSealConfig.Type != c.seal.BarrierType() {
return false, nil
}
if c.seal.RecoveryKeySupported() && existRecoverySealConfig.Type != c.seal.RecoveryType() {
return false, nil
}
if c.seal.BarrierType() != c.migrationInfo.seal.BarrierType() {
return true, nil
}
// The above checks can handle the auto->shamir and shamir->auto
// and auto1->auto2 cases. For auto1->auto1, we need to actually try
// to read and decrypt the keys.
keysMig, errMig := c.migrationInfo.seal.GetStoredKeys(ctx)
keys, err := c.seal.GetStoredKeys(ctx)
switch {
case len(keys) > 0 && err == nil:
return true, nil
case len(keysMig) > 0 && errMig == nil:
return false, nil
case errors.Is(err, &ErrDecrypt{}) && errors.Is(errMig, &ErrDecrypt{}):
return false, fmt.Errorf("decrypt error, neither the old nor new seal can read stored keys: old seal err=%v, new seal err=%v", errMig, err)
default:
return false, fmt.Errorf("neither the old nor new seal can read stored keys: old seal err=%v, new seal err=%v", errMig, err)
}
}
// migrateSeal must be called with the stateLock held.
func (c *Core) migrateSeal(ctx context.Context) error {
if c.migrationInfo == nil {
return nil
}
ok, err := c.sealMigrated(ctx)
if err != nil {
return fmt.Errorf("error checking if seal is migrated or not: %w", err)
}
if ok {
c.logger.Info("migration is already performed")
return nil
}
c.logger.Info("seal migration initiated")
switch {
case c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported():
c.logger.Info("migrating from one auto-unseal to another", "from",
c.migrationInfo.seal.BarrierType(), "to", c.seal.BarrierType())
// Set the recovery and barrier keys to be the same.
recoveryKey, err := c.migrationInfo.seal.RecoveryKey(ctx)
if err != nil {
return errwrap.Wrapf("error getting recovery key to set on new seal: {{err}}", err)
}
if err := c.seal.SetRecoveryKey(ctx, recoveryKey); err != nil {
return errwrap.Wrapf("error setting new recovery key information during migrate: {{err}}", err)
}
barrierKeys, err := c.migrationInfo.seal.GetStoredKeys(ctx)
if err != nil {
return errwrap.Wrapf("error getting stored keys to set on new seal: {{err}}", err)
}
if err := c.seal.SetStoredKeys(ctx, barrierKeys); err != nil {
return errwrap.Wrapf("error setting new barrier key information during migrate: {{err}}", err)
}
case c.migrationInfo.seal.RecoveryKeySupported():
c.logger.Info("migrating from one auto-unseal to shamir", "from", c.migrationInfo.seal.BarrierType())
// Auto to Shamir, since recovery key isn't supported on new seal
recoveryKey, err := c.migrationInfo.seal.RecoveryKey(ctx)
if err != nil {
return errwrap.Wrapf("error getting recovery key to set on new seal: {{err}}", err)
}
// We have recovery keys; we're going to use them as the new shamir KeK.
err = c.seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(recoveryKey)
if err != nil {
return errwrap.Wrapf("failed to set master key in seal: {{err}}", err)
}
barrierKeys, err := c.migrationInfo.seal.GetStoredKeys(ctx)
if err != nil {
return errwrap.Wrapf("error getting stored keys to set on new seal: {{err}}", err)
}
if err := c.seal.SetStoredKeys(ctx, barrierKeys); err != nil {
return errwrap.Wrapf("error setting new barrier key information during migrate: {{err}}", err)
}
case c.seal.RecoveryKeySupported():
c.logger.Info("migrating from shamir to auto-unseal", "to", c.seal.BarrierType())
// Migration is happening from shamir -> auto. In this case use the shamir
// combined key that was used to store the master key as the new recovery key.
if err := c.seal.SetRecoveryKey(ctx, c.migrationInfo.unsealKey); err != nil {
return errwrap.Wrapf("error setting new recovery key information: {{err}}", err)
}
// Generate a new master key
newMasterKey, err := c.barrier.GenerateKey(c.secureRandomReader)
if err != nil {
return errwrap.Wrapf("error generating new master key: {{err}}", err)
}
// Rekey the barrier. This handles the case where the shamir seal we're
// migrating from was a legacy seal without a stored master key.
if err := c.barrier.Rekey(ctx, newMasterKey); err != nil {
return errwrap.Wrapf("error rekeying barrier during migration: {{err}}", err)
}
// Store the new master key
if err := c.seal.SetStoredKeys(ctx, [][]byte{newMasterKey}); err != nil {
return errwrap.Wrapf("error storing new master key: {{err}}", err)
}
default:
return errors.New("unhandled migration case (shamir to shamir)")
}
err = c.migrateSealConfig(ctx)
if err != nil {
return errwrap.Wrapf("error storing new seal configs: {{err}}", err)
}
// Flag migration performed for seal-rewrap later
atomic.StoreUint32(c.sealMigrationDone, 1)
c.logger.Info("seal migration complete")
return nil
}
// unsealInternal takes in the master key and attempts to unseal the barrier.
// N.B.: This must be called with the state write lock held.
func (c *Core) unsealInternal(ctx context.Context, masterKey []byte) error {
// Attempt to unlock
if err := c.barrier.Unseal(ctx, masterKey); err != nil {
return err
}
if err := preUnsealInternal(ctx, c); err != nil {
return err
}
if err := c.startClusterListener(ctx); err != nil {
return err
}
if err := c.startRaftBackend(ctx); err != nil {
return err
}
if err := c.setupReplicationResolverHandler(); err != nil {
c.logger.Warn("failed to start replication resolver server", "error", err)
}
// Do post-unseal setup if HA is not enabled
if c.ha == nil {
// We still need to set up cluster info even if it's not part of a
// cluster right now. This also populates the cached cluster object.
if err := c.setupCluster(ctx); err != nil {
c.logger.Error("cluster setup failed", "error", err)
c.barrier.Seal()
c.logger.Warn("vault is sealed")
return err
}
if err := c.migrateSeal(ctx); err != nil {
c.logger.Error("seal migration error", "error", err)
c.barrier.Seal()
c.logger.Warn("vault is sealed")
return err
}
ctx, ctxCancel := context.WithCancel(namespace.RootContext(nil))
if err := c.postUnseal(ctx, ctxCancel, standardUnsealStrategy{}); err != nil {
c.logger.Error("post-unseal setup failed", "error", err)
c.barrier.Seal()
c.logger.Warn("vault is sealed")
return err
}
// Force a cache bust here, which will also run migration code
if c.seal.RecoveryKeySupported() {
c.seal.SetRecoveryConfig(ctx, nil)
}
c.standby = false
} else {
// Go to standby mode, wait until we are active to unseal
c.standbyDoneCh = make(chan struct{})
c.manualStepDownCh = make(chan struct{}, 1)
c.standbyStopCh.Store(make(chan struct{}))
go c.runStandby(c.standbyDoneCh, c.manualStepDownCh, c.standbyStopCh.Load().(chan struct{}))
}
// Success!
atomic.StoreUint32(c.sealed, 0)
c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 1, nil)
if c.logger.IsInfo() {
c.logger.Info("vault is unsealed")
}
if c.serviceRegistration != nil {
if err := c.serviceRegistration.NotifySealedStateChange(false); err != nil {
if c.logger.IsWarn() {
c.logger.Warn("failed to notify unsealed status", "error", err)
}
}
if err := c.serviceRegistration.NotifyInitializedStateChange(true); err != nil {
if c.logger.IsWarn() {
c.logger.Warn("failed to notify initialized status", "error", err)
}
}
}
return nil
}
// SealWithRequest takes in a logical.Request, acquires the lock, and passes
// through to sealInternal
func (c *Core) SealWithRequest(httpCtx context.Context, req *logical.Request) error {
defer metrics.MeasureSince([]string{"core", "seal-with-request"}, time.Now())
if c.Sealed() {
return nil
}
c.stateLock.RLock()
// This will unlock the read lock
// We use background context since we may not be active
ctx, cancel := context.WithCancel(namespace.RootContext(nil))
defer cancel()
go func() {
select {
case <-ctx.Done():
case <-httpCtx.Done():
cancel()
}
}()
// This will unlock the read lock
return c.sealInitCommon(ctx, req)
}
// Seal takes in a token and creates a logical.Request, acquires the lock, and
// passes through to sealInternal
func (c *Core) Seal(token string) error {
defer metrics.MeasureSince([]string{"core", "seal"}, time.Now())
if c.Sealed() {
return nil
}
c.stateLock.RLock()
req := &logical.Request{
Operation: logical.UpdateOperation,
Path: "sys/seal",
ClientToken: token,
}
// This will unlock the read lock
// We use background context since we may not be active
return c.sealInitCommon(namespace.RootContext(nil), req)
}
// sealInitCommon is common logic for Seal and SealWithRequest and is used to
// re-seal the Vault. This requires the Vault to be unsealed again to perform
// any further operations. Note: this function will read-unlock the state lock.
func (c *Core) sealInitCommon(ctx context.Context, req *logical.Request) (retErr error) {
defer metrics.MeasureSince([]string{"core", "seal-internal"}, time.Now())
var unlocked bool
defer func() {
if !unlocked {
c.stateLock.RUnlock()
}
}()
if req == nil {
retErr = multierror.Append(retErr, errors.New("nil request to seal"))
return retErr
}
// Since there is no token store in standby nodes, sealing cannot be done.
// Ideally, the request has to be forwarded to leader node for validation
// and the operation should be performed. But for now, just returning with
// an error and recommending a vault restart, which essentially does the
// same thing.
if c.standby {
c.logger.Error("vault cannot seal when in standby mode; please restart instead")
retErr = multierror.Append(retErr, errors.New("vault cannot seal when in standby mode; please restart instead"))
return retErr
}
acl, te, entity, identityPolicies, err := c.fetchACLTokenEntryAndEntity(ctx, req)
if err != nil {
retErr = multierror.Append(retErr, err)
return retErr
}
// Audit-log the request before going any further
auth := &logical.Auth{
ClientToken: req.ClientToken,
Accessor: req.ClientTokenAccessor,
}
if te != nil {
auth.IdentityPolicies = identityPolicies[te.NamespaceID]
delete(identityPolicies, te.NamespaceID)
auth.ExternalNamespacePolicies = identityPolicies
auth.TokenPolicies = te.Policies
auth.Policies = append(te.Policies, identityPolicies[te.NamespaceID]...)
auth.Metadata = te.Meta
auth.DisplayName = te.DisplayName
auth.EntityID = te.EntityID
auth.TokenType = te.Type
}
logInput := &logical.LogInput{
Auth: auth,
Request: req,
}
if err := c.auditBroker.LogRequest(ctx, logInput, c.auditedHeaders); err != nil {
c.logger.Error("failed to audit request", "request_path", req.Path, "error", err)
retErr = multierror.Append(retErr, errors.New("failed to audit request, cannot continue"))
return retErr
}
if entity != nil && entity.Disabled {
c.logger.Warn("permission denied as the entity on the token is disabled")
retErr = multierror.Append(retErr, logical.ErrPermissionDenied)
return retErr
}
if te != nil && te.EntityID != "" && entity == nil {
c.logger.Warn("permission denied as the entity on the token is invalid")
retErr = multierror.Append(retErr, logical.ErrPermissionDenied)
return retErr
}
// Attempt to use the token (decrement num_uses)
// On error bail out; if the token has been revoked, bail out too
if te != nil {
te, err = c.tokenStore.UseToken(ctx, te)
if err != nil {
c.logger.Error("failed to use token", "error", err)
retErr = multierror.Append(retErr, ErrInternalError)
return retErr
}
if te == nil {
// Token is no longer valid
retErr = multierror.Append(retErr, logical.ErrPermissionDenied)
return retErr
}
}
// Verify that this operation is allowed
authResults := c.performPolicyChecks(ctx, acl, te, req, entity, &PolicyCheckOpts{
RootPrivsRequired: true,
})
if !authResults.Allowed {
retErr = multierror.Append(retErr, authResults.Error)
if authResults.Error.ErrorOrNil() == nil || authResults.DeniedError {
retErr = multierror.Append(retErr, logical.ErrPermissionDenied)
}
return retErr
}
if te != nil && te.NumUses == tokenRevocationPending {
// Token needs to be revoked. We do this immediately here because
// we won't have a token store after sealing.
leaseID, err := c.expiration.CreateOrFetchRevocationLeaseByToken(c.activeContext, te)
if err == nil {
err = c.expiration.Revoke(c.activeContext, leaseID)
}
if err != nil {
c.logger.Error("token needed revocation before seal but failed to revoke", "error", err)
retErr = multierror.Append(retErr, ErrInternalError)
}
}
// Unlock; sealing will grab the lock when needed
unlocked = true
c.stateLock.RUnlock()
sealErr := c.sealInternal()
if sealErr != nil {
retErr = multierror.Append(retErr, sealErr)
}
return
}
// UIEnabled returns if the UI is enabled
func (c *Core) UIEnabled() bool {
return c.uiConfig.Enabled()
}
// UIHeaders returns configured UI headers
func (c *Core) UIHeaders() (http.Header, error) {
return c.uiConfig.Headers(context.Background())
}
// sealInternal is an internal method used to seal the vault. It does not do
// any authorization checking.
func (c *Core) sealInternal() error {
return c.sealInternalWithOptions(true, false, true)
}
func (c *Core) sealInternalWithOptions(grabStateLock, keepHALock, performCleanup bool) error {
// Mark sealed, and if already marked return
if swapped := atomic.CompareAndSwapUint32(c.sealed, 0, 1); !swapped {
return nil
}
c.metricSink.SetGaugeWithLabels([]string{"core", "unsealed"}, 0, nil)
c.logger.Info("marked as sealed")
// Clear forwarding clients
c.requestForwardingConnectionLock.Lock()
c.clearForwardingClients()
c.requestForwardingConnectionLock.Unlock()
activeCtxCancel := c.activeContextCancelFunc.Load().(context.CancelFunc)
cancelCtxAndLock := func() {
doneCh := make(chan struct{})
go func() {
select {
case <-doneCh:
// Attempt to drain any inflight requests
case <-time.After(DefaultMaxRequestDuration):
if activeCtxCancel != nil {
activeCtxCancel()
}
}
}()
c.stateLock.Lock()
close(doneCh)
// Stop requests from processing
if activeCtxCancel != nil {
activeCtxCancel()
}
}
// Do pre-seal teardown if HA is not enabled
if c.ha == nil {
if grabStateLock {
cancelCtxAndLock()
defer c.stateLock.Unlock()
}
// Even in a non-HA context we key off of this for some things
c.standby = true
// Stop requests from processing
if activeCtxCancel != nil {
activeCtxCancel()
}
if err := c.preSeal(); err != nil {
c.logger.Error("pre-seal teardown failed", "error", err)
return fmt.Errorf("internal error")
}
} else {
// If we are keeping the lock we already have the state write lock
// held. Otherwise grab it here so that when stopCh is triggered we are
// locked.
if keepHALock {
atomic.StoreUint32(c.keepHALockOnStepDown, 1)
}
if grabStateLock {
cancelCtxAndLock()
defer c.stateLock.Unlock()
}
// If we are trying to acquire the lock, force it to return with nil so
// runStandby will exit
// If we are active, signal the standby goroutine to shut down and wait
// for completion. We have the state lock here so nothing else should
// be toggling standby status.
close(c.standbyStopCh.Load().(chan struct{}))
c.logger.Debug("finished triggering standbyStopCh for runStandby")
// Wait for runStandby to stop
<-c.standbyDoneCh
atomic.StoreUint32(c.keepHALockOnStepDown, 0)
c.logger.Debug("runStandby done")
}
c.teardownReplicationResolverHandler()
// Perform additional cleanup upon sealing.
if performCleanup {
if raftBackend := c.getRaftBackend(); raftBackend != nil {
if err := raftBackend.TeardownCluster(c.getClusterListener()); err != nil {
c.logger.Error("error stopping storage cluster", "error", err)
return err
}
}
// Stop the cluster listener
c.stopClusterListener()
}
c.logger.Debug("sealing barrier")
if err := c.barrier.Seal(); err != nil {
c.logger.Error("error sealing barrier", "error", err)
return err
}
if c.serviceRegistration != nil {
if err := c.serviceRegistration.NotifySealedStateChange(true); err != nil {
if c.logger.IsWarn() {
c.logger.Warn("failed to notify sealed status", "error", err)
}
}
}
if c.quotaManager != nil {
if err := c.quotaManager.Reset(); err != nil {
c.logger.Error("error resetting quota manager", "error", err)
}
}
postSealInternal(c)
c.logger.Info("vault is sealed")
return nil
}
type UnsealStrategy interface {
unseal(context.Context, log.Logger, *Core) error
}
type standardUnsealStrategy struct{}
func (s standardUnsealStrategy) unseal(ctx context.Context, logger log.Logger, c *Core) error {
// Clear forwarding clients; we're active
c.requestForwardingConnectionLock.Lock()
c.clearForwardingClients()
c.requestForwardingConnectionLock.Unlock()
// Mark the active time. We do this first so it can be correlated to the logs
// for the active startup.
c.activeTime = time.Now().UTC()
if err := postUnsealPhysical(c); err != nil {
return err
}
if err := enterprisePostUnseal(c, false); err != nil {
return err
}
if !c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary | consts.ReplicationDRSecondary) {
// Only perf primarys should write feature flags, but we do it by
// excluding other states so that we don't have to change it when
// a non-replicated cluster becomes a primary.
if err := c.persistFeatureFlags(ctx); err != nil {
return err
}
}
if !c.IsDRSecondary() {
if err := c.ensureWrappingKey(ctx); err != nil {
return err
}
}
if err := c.setupPluginCatalog(ctx); err != nil {
return err
}
if err := c.loadMounts(ctx); err != nil {
return err
}
if err := enterpriseSetupFilteredPaths(c); err != nil {
return err
}
if err := c.setupMounts(ctx); err != nil {
return err
}
if err := c.setupPolicyStore(ctx); err != nil {
return err
}
if err := c.loadCORSConfig(ctx); err != nil {
return err
}
if err := c.loadCurrentRequestCounters(ctx, time.Now()); err != nil {
return err
}
if err := c.loadCredentials(ctx); err != nil {
return err
}
if err := enterpriseSetupFilteredPaths(c); err != nil {
return err
}
if err := c.setupCredentials(ctx); err != nil {
return err
}
if err := c.setupQuotas(ctx, false); err != nil {
return err
}
if !c.IsDRSecondary() {
if err := c.startRollback(); err != nil {
return err
}
if err := c.setupExpiration(expireLeaseStrategyRevoke); err != nil {
return err
}
if err := c.loadAudits(ctx); err != nil {
return err
}
if err := c.setupAudits(ctx); err != nil {
return err
}
if err := c.loadIdentityStoreArtifacts(ctx); err != nil {
return err
}
if err := loadMFAConfigs(ctx, c); err != nil {
return err
}
if err := c.setupAuditedHeadersConfig(ctx); err != nil {
return err
}
// not waiting on wg to avoid changing existing behavior
var wg sync.WaitGroup
if err := c.setupActivityLog(ctx, &wg); err != nil {
return err
}
} else {
c.auditBroker = NewAuditBroker(c.logger)
}
if !c.ReplicationState().HasState(consts.ReplicationPerformanceSecondary | consts.ReplicationDRSecondary) {
//Cannot do this above, as we need other resources like mounts to be setup
if err := c.setupPluginReload(); err != nil {
return err
}
}
if c.getClusterListener() != nil && (c.ha != nil || shouldStartClusterListener(c)) {
if err := c.setupRaftActiveNode(ctx); err != nil {
return err
}
if err := c.startForwarding(ctx); err != nil {
return err
}
}
c.clusterParamsLock.Lock()
defer c.clusterParamsLock.Unlock()
if err := startReplication(c); err != nil {
return err
}
return nil
}
// postUnseal is invoked on the active node, and performance standby nodes,
// after the barrier is unsealed, but before
// allowing any user operations. This allows us to setup any state that
// requires the Vault to be unsealed such as mount tables, logical backends,
// credential stores, etc.
func (c *Core) postUnseal(ctx context.Context, ctxCancelFunc context.CancelFunc, unsealer UnsealStrategy) (retErr error) {
defer metrics.MeasureSince([]string{"core", "post_unseal"}, time.Now())
// Clear any out
c.postUnsealFuncs = nil
// Create a new request context
c.activeContext = ctx
c.activeContextCancelFunc.Store(ctxCancelFunc)
defer func() {
if retErr != nil {
ctxCancelFunc()
c.preSeal()
}
}()
c.logger.Info("post-unseal setup starting")
// Enable the cache
c.physicalCache.Purge(ctx)
if !c.cachingDisabled {
c.physicalCache.SetEnabled(true)
}
// Purge these for safety in case of a rekey
c.seal.SetBarrierConfig(ctx, nil)
if c.seal.RecoveryKeySupported() {
c.seal.SetRecoveryConfig(ctx, nil)
}
if err := unsealer.unseal(ctx, c.logger, c); err != nil {
return err
}
// Automatically re-encrypt the keys used for auto unsealing when the
// seal's encryption key changes. The regular rotation of cryptographic
// keys is a NIST recommendation. Access to prior keys for decryption
// is normally supported for a configurable time period. Re-encrypting
// the keys used for auto unsealing ensures Vault and its data will
// continue to be accessible even after prior seal keys are destroyed.
if seal, ok := c.seal.(*autoSeal); ok {
if err := seal.UpgradeKeys(c.activeContext); err != nil {
c.logger.Warn("post-unseal upgrade seal keys failed", "error", err)
}
}
c.metricsCh = make(chan struct{})
go c.emitMetrics(c.metricsCh)
// This is intentionally the last block in this function. We want to allow
// writes just before allowing client requests, to ensure everything has
// been set up properly before any writes can have happened.
for _, v := range c.postUnsealFuncs {
v()
}
if atomic.LoadUint32(c.sealMigrationDone) == 1 {
if err := c.postSealMigration(ctx); err != nil {
c.logger.Warn("post-unseal post seal migration failed", "error", err)
}
}
c.logger.Info("post-unseal setup complete")
return nil
}
// preSeal is invoked before the barrier is sealed, allowing
// for any state teardown required.
func (c *Core) preSeal() error {
defer metrics.MeasureSince([]string{"core", "pre_seal"}, time.Now())
c.logger.Info("pre-seal teardown starting")
// Clear any pending funcs
c.postUnsealFuncs = nil
c.activeTime = time.Time{}
// Clear any rekey progress
c.barrierRekeyConfig = nil
c.recoveryRekeyConfig = nil
if c.metricsCh != nil {
close(c.metricsCh)
c.metricsCh = nil
}
var result error
c.stopForwarding()
c.stopRaftActiveNode()
c.clusterParamsLock.Lock()
if err := stopReplication(c); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error stopping replication: {{err}}", err))
}
c.clusterParamsLock.Unlock()
if err := c.teardownAudits(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error tearing down audits: {{err}}", err))
}
if err := c.stopExpiration(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error stopping expiration: {{err}}", err))
}
if err := c.stopActivityLog(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error stopping activity log: {{err}}", err))
}
if err := c.teardownCredentials(context.Background()); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error tearing down credentials: {{err}}", err))
}
if err := c.teardownPolicyStore(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error tearing down policy store: {{err}}", err))
}
if err := c.stopRollback(); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error stopping rollback: {{err}}", err))
}
if err := c.unloadMounts(context.Background()); err != nil {
result = multierror.Append(result, errwrap.Wrapf("error unloading mounts: {{err}}", err))
}
if err := enterprisePreSeal(c); err != nil {
result = multierror.Append(result, err)
}
preSealPhysical(c)
c.logger.Info("pre-seal teardown complete")
return result
}
func enterprisePostUnsealImpl(c *Core, isStandby bool) error {
return nil
}
func enterprisePreSealImpl(c *Core) error {
return nil
}
func enterpriseSetupFilteredPathsImpl(c *Core) error {
return nil
}
func enterpriseSetupQuotasImpl(ctx context.Context, c *Core) error {
return nil
}
func startReplicationImpl(c *Core) error {
return nil
}
func stopReplicationImpl(c *Core) error {
return nil
}
func (c *Core) ReplicationState() consts.ReplicationState {
return consts.ReplicationState(atomic.LoadUint32(c.replicationState))
}
func (c *Core) ActiveNodeReplicationState() consts.ReplicationState {
return consts.ReplicationState(atomic.LoadUint32(c.activeNodeReplicationState))
}
func (c *Core) SealAccess() *SealAccess {
return NewSealAccess(c.seal)
}
// StorageType returns a string equal to the storage configuration's type.
func (c *Core) StorageType() string {
return c.storageType
}
func (c *Core) Logger() log.Logger {
return c.logger
}
func (c *Core) BarrierKeyLength() (min, max int) {
min, max = c.barrier.KeyLength()
max += shamir.ShareOverhead
return
}
func (c *Core) AuditedHeadersConfig() *AuditedHeadersConfig {
return c.auditedHeaders
}
func waitUntilWALShippedImpl(ctx context.Context, c *Core, index uint64) bool {
return true
}
func merkleRootImpl(c *Core) string {
return ""
}
func lastWALImpl(c *Core) uint64 {
return 0
}
func lastPerformanceWALImpl(c *Core) uint64 {
return 0
}
func lastRemoteWALImpl(c *Core) uint64 {
return 0
}
func (c *Core) PhysicalSealConfigs(ctx context.Context) (*SealConfig, *SealConfig, error) {
pe, err := c.physical.Get(ctx, barrierSealConfigPath)
if err != nil {
return nil, nil, errwrap.Wrapf("failed to fetch barrier seal configuration at migration check time: {{err}}", err)
}
if pe == nil {
return nil, nil, nil
}
barrierConf := new(SealConfig)
if err := jsonutil.DecodeJSON(pe.Value, barrierConf); err != nil {
return nil, nil, errwrap.Wrapf("failed to decode barrier seal configuration at migration check time: {{err}}", err)
}
err = barrierConf.Validate()
if err != nil {
return nil, nil, errwrap.Wrapf("failed to validate barrier seal configuration at migration check time: {{err}}", err)
}
// In older versions of vault the default seal would not store a type. This
// is here to offer backwards compatibility for older seal configs.
if barrierConf.Type == "" {
barrierConf.Type = wrapping.Shamir
}
var recoveryConf *SealConfig
pe, err = c.physical.Get(ctx, recoverySealConfigPlaintextPath)
if err != nil {
return nil, nil, errwrap.Wrapf("failed to fetch seal configuration at migration check time: {{err}}", err)
}
if pe != nil {
recoveryConf = &SealConfig{}
if err := jsonutil.DecodeJSON(pe.Value, recoveryConf); err != nil {
return nil, nil, errwrap.Wrapf("failed to decode seal configuration at migration check time: {{err}}", err)
}
err = recoveryConf.Validate()
if err != nil {
return nil, nil, errwrap.Wrapf("failed to validate seal configuration at migration check time: {{err}}", err)
}
// In older versions of vault the default seal would not store a type. This
// is here to offer backwards compatibility for older seal configs.
if recoveryConf.Type == "" {
recoveryConf.Type = wrapping.Shamir
}
}
return barrierConf, recoveryConf, nil
}
// adjustForSealMigration takes the unwrapSeal, which is nil if (a) we're not
// configured for seal migration or (b) we might be doing a seal migration away
// from shamir. It will only be non-nil if there is a configured seal with
// the config key disabled=true, which implies a migration away from autoseal.
//
// For case (a), the common case, we expect that the stored barrier
// config matches the seal type, in which case we simply return nil. If they
// don't match, and the stored seal config is of type Shamir but the configured
// seal is not Shamir, that is case (b) and we make an unwrapSeal of type Shamir.
// Any other unwrapSeal=nil scenario is treated as an error.
//
// Given a non-nil unwrapSeal or case (b), we setup c.migrationInfo to prepare
// for a migration upon receiving a valid migration unseal request. We cannot
// check at this time for already performed (or incomplete) migrations because
// we haven't yet been unsealed, so we have no way of checking whether a
// shamir seal works to read stored seal-encrypted data.
//
// The assumption throughout is that the very last step of seal migration is
// to write the new barrier/recovery stored seal config.
func (c *Core) adjustForSealMigration(unwrapSeal Seal) error {
ctx := context.Background()
existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx)
if err != nil {
return fmt.Errorf("Error checking for existing seal: %s", err)
}
// If we don't have an existing config or if it's the deprecated auto seal
// which needs an upgrade, skip out
if existBarrierSealConfig == nil || existBarrierSealConfig.Type == wrapping.HSMAutoDeprecated {
return nil
}
if unwrapSeal == nil {
// With unwrapSeal==nil, either we're not migrating, or we're migrating
// from shamir.
switch {
case existBarrierSealConfig.Type == c.seal.BarrierType():
// We have the same barrier type and the unwrap seal is nil so we're not
// migrating from same to same, IOW we assume it's not a migration.
return nil
case c.seal.BarrierType() == wrapping.Shamir:
// The stored barrier config is not shamir, there is no disabled seal
// in config, and either no configured seal (which equates to Shamir)
// or an explicitly configured Shamir seal.
return fmt.Errorf("cannot seal migrate from %q to Shamir, no disabled seal in configuration",
existBarrierSealConfig.Type)
case existBarrierSealConfig.Type == wrapping.Shamir:
// The configured seal is not Shamir, the stored seal config is Shamir.
// This is a migration away from Shamir.
unwrapSeal = NewDefaultSeal(&vaultseal.Access{
Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{
Logger: c.logger.Named("shamir"),
}),
})
default:
// We know at this point that there is a configured non-Shamir seal,
// that it does not match the stored non-Shamir seal config, and that
// there is no explicit disabled seal stanza.
return fmt.Errorf("cannot seal migrate from %q to %q, no disabled seal in configuration",
existBarrierSealConfig.Type, c.seal.BarrierType())
}
} else {
// If we're not coming from Shamir we expect the previous seal to be
// in the config and disabled.
if unwrapSeal.BarrierType() == wrapping.Shamir {
return errors.New("Shamir seals cannot be set disabled (they should simply not be set)")
}
}
// If we've reached this point it's a migration attempt and we should have both
// c.migrationInfo.seal (old seal) and c.seal (new seal) populated.
unwrapSeal.SetCore(c)
// No stored recovery seal config found, what about the legacy recovery config?
if existBarrierSealConfig.Type != wrapping.Shamir && existRecoverySealConfig == nil {
entry, err := c.physical.Get(ctx, recoverySealConfigPath)
if err != nil {
return errwrap.Wrapf(fmt.Sprintf("failed to read %q recovery seal configuration: {{err}}", existBarrierSealConfig.Type), err)
}
if entry == nil {
return errors.New("Recovery seal configuration not found for existing seal")
}
return errors.New("Cannot migrate seals while using a legacy recovery seal config")
}
c.migrationInfo = &migrationInformation{
seal: unwrapSeal,
}
if existBarrierSealConfig.Type != c.seal.BarrierType() {
// It's unnecessary to call this when doing an auto->auto
// same-seal-type migration, since they'll have the same configs before
// and after migration.
c.adjustSealConfigDuringMigration(existBarrierSealConfig, existRecoverySealConfig)
}
c.initSealsForMigration()
c.logger.Warn("entering seal migration mode; Vault will not automatically unseal even if using an autoseal", "from_barrier_type", c.migrationInfo.seal.BarrierType(), "to_barrier_type", c.seal.BarrierType())
return nil
}
func (c *Core) migrateSealConfig(ctx context.Context) error {
existBarrierSealConfig, existRecoverySealConfig, err := c.PhysicalSealConfigs(ctx)
if err != nil {
return fmt.Errorf("failed to read existing seal configuration during migration: %v", err)
}
var bc, rc *SealConfig
switch {
case c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported():
// Migrating from auto->auto, copy the configs over
bc, rc = existBarrierSealConfig, existRecoverySealConfig
case c.migrationInfo.seal.RecoveryKeySupported():
// Migrating from auto->shamir, clone auto's recovery config and set
// stored keys to 1.
bc = existRecoverySealConfig.Clone()
bc.StoredShares = 1
case c.seal.RecoveryKeySupported():
// Migrating from shamir->auto, set a new barrier config and set
// recovery config to a clone of shamir's barrier config with stored
// keys set to 0.
bc = &SealConfig{
Type: c.seal.BarrierType(),
SecretShares: 1,
SecretThreshold: 1,
StoredShares: 1,
}
rc = existBarrierSealConfig.Clone()
rc.StoredShares = 0
}
if err := c.seal.SetBarrierConfig(ctx, bc); err != nil {
return errwrap.Wrapf("error storing barrier config after migration: {{err}}", err)
}
if c.seal.RecoveryKeySupported() {
if err := c.seal.SetRecoveryConfig(ctx, rc); err != nil {
return errwrap.Wrapf("error storing recovery config after migration: {{err}}", err)
}
} else if err := c.physical.Delete(ctx, recoverySealConfigPlaintextPath); err != nil {
return errwrap.Wrapf("failed to delete old recovery seal configuration during migration: {{err}}", err)
}
return nil
}
func (c *Core) adjustSealConfigDuringMigration(existBarrierSealConfig, existRecoverySealConfig *SealConfig) {
switch {
case c.migrationInfo.seal.RecoveryKeySupported() && existRecoverySealConfig != nil:
// Migrating from auto->shamir, clone auto's recovery config and set
// stored keys to 1. Unless the recover config doesn't exist, in which
// case the migration is assumed to already have been performed.
newSealConfig := existRecoverySealConfig.Clone()
newSealConfig.StoredShares = 1
c.seal.SetCachedBarrierConfig(newSealConfig)
case !c.migrationInfo.seal.RecoveryKeySupported() && c.seal.RecoveryKeySupported():
// Migrating from shamir->auto, set a new barrier config and set
// recovery config to a clone of shamir's barrier config with stored
// keys set to 0.
newBarrierSealConfig := &SealConfig{
Type: c.seal.BarrierType(),
SecretShares: 1,
SecretThreshold: 1,
StoredShares: 1,
}
c.seal.SetCachedBarrierConfig(newBarrierSealConfig)
newRecoveryConfig := existBarrierSealConfig.Clone()
newRecoveryConfig.StoredShares = 0
c.seal.SetCachedRecoveryConfig(newRecoveryConfig)
}
}
func (c *Core) unsealKeyToMasterKeyPostUnseal(ctx context.Context, combinedKey []byte) ([]byte, error) {
return c.unsealKeyToMasterKey(ctx, c.seal, combinedKey, true, false)
}
func (c *Core) unsealKeyToMasterKeyPreUnseal(ctx context.Context, seal Seal, combinedKey []byte) ([]byte, error) {
return c.unsealKeyToMasterKey(ctx, seal, combinedKey, false, true)
}
// unsealKeyToMasterKey takes a key provided by the user, either a recovery key
// if using an autoseal or an unseal key with Shamir. It returns a nil error
// if the key is valid and an error otherwise. It also returns the master key
// that can be used to unseal the barrier.
// If useTestSeal is true, seal will not be modified; this is used when not
// invoked as part of an unseal process. Otherwise in the non-legacy shamir
// case the combinedKey will be set in the seal, which means subsequent attempts
// to use the seal to read the master key will succeed, assuming combinedKey is
// valid.
// If allowMissing is true, a failure to find the master key in storage results
// in a nil error and a nil master key being returned.
func (c *Core) unsealKeyToMasterKey(ctx context.Context, seal Seal, combinedKey []byte, useTestSeal bool, allowMissing bool) ([]byte, error) {
switch seal.StoredKeysSupported() {
case vaultseal.StoredKeysSupportedGeneric:
if err := seal.VerifyRecoveryKey(ctx, combinedKey); err != nil {
return nil, errwrap.Wrapf("recovery key verification failed: {{err}}", err)
}
storedKeys, err := seal.GetStoredKeys(ctx)
if storedKeys == nil && err == nil && allowMissing {
return nil, nil
}
if err == nil && len(storedKeys) != 1 {
err = fmt.Errorf("expected exactly one stored key, got %d", len(storedKeys))
}
if err != nil {
return nil, errwrap.Wrapf("unable to retrieve stored keys: {{err}}", err)
}
return storedKeys[0], nil
case vaultseal.StoredKeysSupportedShamirMaster:
if useTestSeal {
testseal := NewDefaultSeal(&vaultseal.Access{
Wrapper: aeadwrapper.NewShamirWrapper(&wrapping.WrapperOptions{
Logger: c.logger.Named("testseal"),
}),
})
testseal.SetCore(c)
cfg, err := seal.BarrierConfig(ctx)
if err != nil {
return nil, errwrap.Wrapf("failed to setup test barrier config: {{err}}", err)
}
testseal.SetCachedBarrierConfig(cfg)
seal = testseal
}
err := seal.GetAccess().Wrapper.(*aeadwrapper.ShamirWrapper).SetAESGCMKeyBytes(combinedKey)
if err != nil {
return nil, errwrap.Wrapf("failed to setup unseal key: {{err}}", err)
}
storedKeys, err := seal.GetStoredKeys(ctx)
if storedKeys == nil && err == nil && allowMissing {
return nil, nil
}
if err == nil && len(storedKeys) != 1 {
err = fmt.Errorf("expected exactly one stored key, got %d", len(storedKeys))
}
if err != nil {
return nil, errwrap.Wrapf("unable to retrieve stored keys: {{err}}", err)
}
return storedKeys[0], nil
case vaultseal.StoredKeysNotSupported:
return combinedKey, nil
}
return nil, fmt.Errorf("invalid seal")
}
// IsInSealMigrationMode returns true if we're configured to perform a seal migration,
// meaning either that we have a disabled seal in HCL configuration or the seal
// configuration in storage is Shamir but the seal in HCL is not. In this
// mode we should not auto-unseal (even if the migration is done) and we will
// accept unseal requests with and without the `migrate` option, though the migrate
// option is required if we haven't yet performed the seal migration.
func (c *Core) IsInSealMigrationMode() bool {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
return c.migrationInfo != nil
}
// IsSealMigrated returns true if we're in seal migration mode but migration
// has already been performed (possibly by another node, or prior to this node's
// current invocation.)
func (c *Core) IsSealMigrated() bool {
if !c.IsInSealMigrationMode() {
return false
}
c.stateLock.RLock()
defer c.stateLock.RUnlock()
done, _ := c.sealMigrated(context.Background())
return done
}
func (c *Core) BarrierEncryptorAccess() *BarrierEncryptorAccess {
return NewBarrierEncryptorAccess(c.barrier)
}
func (c *Core) PhysicalAccess() *physical.PhysicalAccess {
return physical.NewPhysicalAccess(c.physical)
}
func (c *Core) RouterAccess() *RouterAccess {
return NewRouterAccess(c)
}
// IsDRSecondary returns if the current cluster state is a DR secondary.
func (c *Core) IsDRSecondary() bool {
return c.ReplicationState().HasState(consts.ReplicationDRSecondary)
}
func (c *Core) AddLogger(logger log.Logger) {
c.allLoggersLock.Lock()
defer c.allLoggersLock.Unlock()
c.allLoggers = append(c.allLoggers, logger)
}
func (c *Core) SetLogLevel(level log.Level) {
c.allLoggersLock.RLock()
defer c.allLoggersLock.RUnlock()
for _, logger := range c.allLoggers {
logger.SetLevel(level)
}
}
// SetConfig sets core's config object to the newly provided config.
func (c *Core) SetConfig(conf *server.Config) {
c.rawConfig.Store(conf)
bz, err := json.Marshal(c.SanitizedConfig())
if err != nil {
c.logger.Error("error serializing sanitized config", "error", err)
return
}
c.logger.Debug("set config", "sanitized config", string(bz))
}
// SanitizedConfig returns a sanitized version of the current config.
// See server.Config.Sanitized for specific values omitted.
func (c *Core) SanitizedConfig() map[string]interface{} {
conf := c.rawConfig.Load()
if conf == nil {
return nil
}
return conf.(*server.Config).Sanitized()
}
// LogFormat returns the log format current in use.
func (c *Core) LogFormat() string {
conf := c.rawConfig.Load()
return conf.(*server.Config).LogFormat
}
// MetricsHelper returns the global metrics helper which allows external
// packages to access Vault's internal metrics.
func (c *Core) MetricsHelper() *metricsutil.MetricsHelper {
return c.metricsHelper
}
// MetricSink returns the metrics wrapper with which Core has been configured.
func (c *Core) MetricSink() *metricsutil.ClusterMetricSink {
return c.metricSink
}
// BuiltinRegistry is an interface that allows the "vault" package to use
// the registry of builtin plugins without getting an import cycle. It
// also allows for mocking the registry easily.
type BuiltinRegistry interface {
Contains(name string, pluginType consts.PluginType) bool
Get(name string, pluginType consts.PluginType) (func() (interface{}, error), bool)
Keys(pluginType consts.PluginType) []string
}
func (c *Core) AuditLogger() AuditLogger {
return &basicAuditor{c: c}
}
type FeatureFlags struct {
NamespacesCubbyholesLocal bool `json:"namespace_cubbyholes_local"`
}
func (c *Core) persistFeatureFlags(ctx context.Context) error {
if !c.PR1103disabled {
c.logger.Debug("persisting feature flags")
json, err := jsonutil.EncodeJSON(&FeatureFlags{NamespacesCubbyholesLocal: !c.PR1103disabled})
if err != nil {
return err
}
return c.barrier.Put(ctx, &logical.StorageEntry{
Key: consts.CoreFeatureFlagPath,
Value: json,
})
}
return nil
}
func (c *Core) readFeatureFlags(ctx context.Context) (*FeatureFlags, error) {
entry, err := c.barrier.Get(ctx, consts.CoreFeatureFlagPath)
if err != nil {
return nil, err
}
var flags FeatureFlags
if entry != nil {
err = jsonutil.DecodeJSON(entry.Value, &flags)
if err != nil {
return nil, err
}
}
return &flags, nil
}
// MatchingMount returns the path of the mount that will be responsible for
// handling the given request path.
func (c *Core) MatchingMount(ctx context.Context, reqPath string) string {
return c.router.MatchingMount(ctx, reqPath)
}
func (c *Core) setupQuotas(ctx context.Context, isPerfStandby bool) error {
if c.quotaManager == nil {
return nil
}
return c.quotaManager.Setup(ctx, c.systemBarrierView, isPerfStandby)
}
// ApplyRateLimitQuota checks the request against all the applicable quota rules.
// If the given request's path is exempt, no rate limiting will be applied.
func (c *Core) ApplyRateLimitQuota(req *quotas.Request) (quotas.Response, error) {
req.Type = quotas.TypeRateLimit
resp := quotas.Response{
Allowed: true,
Headers: make(map[string]string),
}
if c.quotaManager != nil {
// skip rate limit checks for paths that are exempt from rate limiting
if c.quotaManager.RateLimitPathExempt(req.Path) {
return resp, nil
}
return c.quotaManager.ApplyQuota(req)
}
return resp, nil
}
// RateLimitAuditLoggingEnabled returns if the quota configuration allows audit
// logging of request rejections due to rate limiting quota rule violations.
func (c *Core) RateLimitAuditLoggingEnabled() bool {
if c.quotaManager != nil {
return c.quotaManager.RateLimitAuditLoggingEnabled()
}
return false
}
// RateLimitResponseHeadersEnabled returns if the quota configuration allows for
// rate limit quota HTTP headers to be added to responses.
func (c *Core) RateLimitResponseHeadersEnabled() bool {
if c.quotaManager != nil {
return c.quotaManager.RateLimitResponseHeadersEnabled()
}
return false
}
func (c *Core) KeyRotateGracePeriod() time.Duration {
return time.Duration(atomic.LoadInt64(c.keyRotateGracePeriod))
}
func (c *Core) SetKeyRotateGracePeriod(t time.Duration) {
atomic.StoreInt64(c.keyRotateGracePeriod, int64(t))
}