822 lines
21 KiB
Go
822 lines
21 KiB
Go
package keysutil
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"encoding/asn1"
|
|
"encoding/base64"
|
|
"encoding/json"
|
|
"encoding/pem"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"golang.org/x/crypto/hkdf"
|
|
|
|
uuid "github.com/hashicorp/go-uuid"
|
|
"github.com/hashicorp/vault/helper/errutil"
|
|
"github.com/hashicorp/vault/helper/jsonutil"
|
|
"github.com/hashicorp/vault/helper/kdf"
|
|
"github.com/hashicorp/vault/logical"
|
|
)
|
|
|
|
// Careful with iota; don't put anything before it in this const block because
|
|
// we need the default of zero to be the old-style KDF
|
|
const (
|
|
Kdf_hmac_sha256_counter = iota // built-in helper
|
|
Kdf_hkdf_sha256 // golang.org/x/crypto/hkdf
|
|
)
|
|
|
|
// Or this one...we need the default of zero to be the original AES256-GCM96
|
|
const (
|
|
KeyType_AES256_GCM96 = iota
|
|
KeyType_ECDSA_P256
|
|
)
|
|
|
|
const ErrTooOld = "ciphertext or signature version is disallowed by policy (too old)"
|
|
|
|
type ecdsaSignature struct {
|
|
R, S *big.Int
|
|
}
|
|
|
|
type KeyType int
|
|
|
|
func (kt KeyType) EncryptionSupported() bool {
|
|
switch kt {
|
|
case KeyType_AES256_GCM96:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (kt KeyType) DecryptionSupported() bool {
|
|
switch kt {
|
|
case KeyType_AES256_GCM96:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (kt KeyType) SigningSupported() bool {
|
|
switch kt {
|
|
case KeyType_ECDSA_P256:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (kt KeyType) DerivationSupported() bool {
|
|
switch kt {
|
|
case KeyType_AES256_GCM96:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (kt KeyType) String() string {
|
|
switch kt {
|
|
case KeyType_AES256_GCM96:
|
|
return "aes256-gcm96"
|
|
case KeyType_ECDSA_P256:
|
|
return "ecdsa-p256"
|
|
}
|
|
|
|
return "[unknown]"
|
|
}
|
|
|
|
// KeyEntry stores the key and metadata
|
|
type KeyEntry struct {
|
|
AESKey []byte `json:"key"`
|
|
HMACKey []byte `json:"hmac_key"`
|
|
CreationTime int64 `json:"creation_time"`
|
|
EC_X *big.Int `json:"ec_x"`
|
|
EC_Y *big.Int `json:"ec_y"`
|
|
EC_D *big.Int `json:"ec_d"`
|
|
FormattedPublicKey string `json:"public_key"`
|
|
}
|
|
|
|
// keyEntryMap is used to allow JSON marshal/unmarshal
|
|
type keyEntryMap map[int]KeyEntry
|
|
|
|
// MarshalJSON implements JSON marshaling
|
|
func (kem keyEntryMap) MarshalJSON() ([]byte, error) {
|
|
intermediate := map[string]KeyEntry{}
|
|
for k, v := range kem {
|
|
intermediate[strconv.Itoa(k)] = v
|
|
}
|
|
return json.Marshal(&intermediate)
|
|
}
|
|
|
|
// MarshalJSON implements JSON unmarshaling
|
|
func (kem keyEntryMap) UnmarshalJSON(data []byte) error {
|
|
intermediate := map[string]KeyEntry{}
|
|
if err := jsonutil.DecodeJSON(data, &intermediate); err != nil {
|
|
return err
|
|
}
|
|
for k, v := range intermediate {
|
|
keyval, err := strconv.Atoi(k)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
kem[keyval] = v
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Policy is the struct used to store metadata
|
|
type Policy struct {
|
|
Name string `json:"name"`
|
|
Key []byte `json:"key,omitempty"` //DEPRECATED
|
|
Keys keyEntryMap `json:"keys"`
|
|
|
|
// Derived keys MUST provide a context and the master underlying key is
|
|
// never used. If convergent encryption is true, the context will be used
|
|
// as the nonce as well.
|
|
Derived bool `json:"derived"`
|
|
KDF int `json:"kdf"`
|
|
ConvergentEncryption bool `json:"convergent_encryption"`
|
|
|
|
// Whether the key is exportable
|
|
Exportable bool `json:"exportable"`
|
|
|
|
// The minimum version of the key allowed to be used
|
|
// for decryption
|
|
MinDecryptionVersion int `json:"min_decryption_version"`
|
|
|
|
// The latest key version in this policy
|
|
LatestVersion int `json:"latest_version"`
|
|
|
|
// The latest key version in the archive. We never delete these, so this is
|
|
// a max.
|
|
ArchiveVersion int `json:"archive_version"`
|
|
|
|
// Whether the key is allowed to be deleted
|
|
DeletionAllowed bool `json:"deletion_allowed"`
|
|
|
|
// The version of the convergent nonce to use
|
|
ConvergentVersion int `json:"convergent_version"`
|
|
|
|
// The type of key
|
|
Type KeyType `json:"type"`
|
|
}
|
|
|
|
// ArchivedKeys stores old keys. This is used to keep the key loading time sane
|
|
// when there are huge numbers of rotations.
|
|
type archivedKeys struct {
|
|
Keys []KeyEntry `json:"keys"`
|
|
}
|
|
|
|
func (p *Policy) LoadArchive(storage logical.Storage) (*archivedKeys, error) {
|
|
archive := &archivedKeys{}
|
|
|
|
raw, err := storage.Get("archive/" + p.Name)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if raw == nil {
|
|
archive.Keys = make([]KeyEntry, 0)
|
|
return archive, nil
|
|
}
|
|
|
|
if err := jsonutil.DecodeJSON(raw.Value, archive); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return archive, nil
|
|
}
|
|
|
|
func (p *Policy) storeArchive(archive *archivedKeys, storage logical.Storage) error {
|
|
// Encode the policy
|
|
buf, err := json.Marshal(archive)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Write the policy into storage
|
|
err = storage.Put(&logical.StorageEntry{
|
|
Key: "archive/" + p.Name,
|
|
Value: buf,
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// handleArchiving manages the movement of keys to and from the policy archive.
|
|
// This should *ONLY* be called from Persist() since it assumes that the policy
|
|
// will be persisted afterwards.
|
|
func (p *Policy) handleArchiving(storage logical.Storage) error {
|
|
// We need to move keys that are no longer accessible to archivedKeys, and keys
|
|
// that now need to be accessible back here.
|
|
//
|
|
// For safety, because there isn't really a good reason to, we never delete
|
|
// keys from the archive even when we move them back.
|
|
|
|
// Check if we have the latest minimum version in the current set of keys
|
|
_, keysContainsMinimum := p.Keys[p.MinDecryptionVersion]
|
|
|
|
// Sanity checks
|
|
switch {
|
|
case p.MinDecryptionVersion < 1:
|
|
return fmt.Errorf("minimum decryption version of %d is less than 1", p.MinDecryptionVersion)
|
|
case p.LatestVersion < 1:
|
|
return fmt.Errorf("latest version of %d is less than 1", p.LatestVersion)
|
|
case !keysContainsMinimum && p.ArchiveVersion != p.LatestVersion:
|
|
return fmt.Errorf("need to move keys from archive but archive version not up-to-date")
|
|
case p.ArchiveVersion > p.LatestVersion:
|
|
return fmt.Errorf("archive version of %d is greater than the latest version %d",
|
|
p.ArchiveVersion, p.LatestVersion)
|
|
case p.MinDecryptionVersion > p.LatestVersion:
|
|
return fmt.Errorf("minimum decryption version of %d is greater than the latest version %d",
|
|
p.MinDecryptionVersion, p.LatestVersion)
|
|
}
|
|
|
|
archive, err := p.LoadArchive(storage)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if !keysContainsMinimum {
|
|
// Need to move keys *from* archive
|
|
|
|
for i := p.MinDecryptionVersion; i <= p.LatestVersion; i++ {
|
|
p.Keys[i] = archive.Keys[i]
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Need to move keys *to* archive
|
|
|
|
// We need a size that is equivalent to the latest version (number of keys)
|
|
// but adding one since slice numbering starts at 0 and we're indexing by
|
|
// key version
|
|
if len(archive.Keys) < p.LatestVersion+1 {
|
|
// Increase the size of the archive slice
|
|
newKeys := make([]KeyEntry, p.LatestVersion+1)
|
|
copy(newKeys, archive.Keys)
|
|
archive.Keys = newKeys
|
|
}
|
|
|
|
// We are storing all keys in the archive, so we ensure that it is up to
|
|
// date up to p.LatestVersion
|
|
for i := p.ArchiveVersion + 1; i <= p.LatestVersion; i++ {
|
|
archive.Keys[i] = p.Keys[i]
|
|
p.ArchiveVersion = i
|
|
}
|
|
|
|
err = p.storeArchive(archive, storage)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Perform deletion afterwards so that if there is an error saving we
|
|
// haven't messed with the current policy
|
|
for i := p.LatestVersion - len(p.Keys) + 1; i < p.MinDecryptionVersion; i++ {
|
|
delete(p.Keys, i)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (p *Policy) Persist(storage logical.Storage) error {
|
|
err := p.handleArchiving(storage)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Encode the policy
|
|
buf, err := p.Serialize()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Write the policy into storage
|
|
err = storage.Put(&logical.StorageEntry{
|
|
Key: "policy/" + p.Name,
|
|
Value: buf,
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (p *Policy) Serialize() ([]byte, error) {
|
|
return json.Marshal(p)
|
|
}
|
|
|
|
func (p *Policy) NeedsUpgrade() bool {
|
|
// Ensure we've moved from Key -> Keys
|
|
if p.Key != nil && len(p.Key) > 0 {
|
|
return true
|
|
}
|
|
|
|
// With archiving, past assumptions about the length of the keys map are no
|
|
// longer valid
|
|
if p.LatestVersion == 0 && len(p.Keys) != 0 {
|
|
return true
|
|
}
|
|
|
|
// We disallow setting the version to 0, since they start at 1 since moving
|
|
// to rotate-able keys, so update if it's set to 0
|
|
if p.MinDecryptionVersion == 0 {
|
|
return true
|
|
}
|
|
|
|
// On first load after an upgrade, copy keys to the archive
|
|
if p.ArchiveVersion == 0 {
|
|
return true
|
|
}
|
|
|
|
// Need to write the version
|
|
if p.ConvergentEncryption && p.ConvergentVersion == 0 {
|
|
return true
|
|
}
|
|
|
|
if p.Keys[p.LatestVersion].HMACKey == nil || len(p.Keys[p.LatestVersion].HMACKey) == 0 {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func (p *Policy) Upgrade(storage logical.Storage) error {
|
|
persistNeeded := false
|
|
// Ensure we've moved from Key -> Keys
|
|
if p.Key != nil && len(p.Key) > 0 {
|
|
p.MigrateKeyToKeysMap()
|
|
persistNeeded = true
|
|
}
|
|
|
|
// With archiving, past assumptions about the length of the keys map are no
|
|
// longer valid
|
|
if p.LatestVersion == 0 && len(p.Keys) != 0 {
|
|
p.LatestVersion = len(p.Keys)
|
|
persistNeeded = true
|
|
}
|
|
|
|
// We disallow setting the version to 0, since they start at 1 since moving
|
|
// to rotate-able keys, so update if it's set to 0
|
|
if p.MinDecryptionVersion == 0 {
|
|
p.MinDecryptionVersion = 1
|
|
persistNeeded = true
|
|
}
|
|
|
|
// On first load after an upgrade, copy keys to the archive
|
|
if p.ArchiveVersion == 0 {
|
|
persistNeeded = true
|
|
}
|
|
|
|
if p.ConvergentEncryption && p.ConvergentVersion == 0 {
|
|
p.ConvergentVersion = 1
|
|
persistNeeded = true
|
|
}
|
|
|
|
if p.Keys[p.LatestVersion].HMACKey == nil || len(p.Keys[p.LatestVersion].HMACKey) == 0 {
|
|
entry := p.Keys[p.LatestVersion]
|
|
hmacKey, err := uuid.GenerateRandomBytes(32)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entry.HMACKey = hmacKey
|
|
p.Keys[p.LatestVersion] = entry
|
|
persistNeeded = true
|
|
}
|
|
|
|
if persistNeeded {
|
|
err := p.Persist(storage)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// DeriveKey is used to derive the encryption key that should be used depending
|
|
// on the policy. If derivation is disabled the raw key is used and no context
|
|
// is required, otherwise the KDF mode is used with the context to derive the
|
|
// proper key.
|
|
func (p *Policy) DeriveKey(context []byte, ver int) ([]byte, error) {
|
|
if !p.Type.DerivationSupported() {
|
|
return nil, errutil.UserError{Err: fmt.Sprintf("derivation not supported for key type %v", p.Type)}
|
|
}
|
|
|
|
if p.Keys == nil || p.LatestVersion == 0 {
|
|
return nil, errutil.InternalError{Err: "unable to access the key; no key versions found"}
|
|
}
|
|
|
|
if ver <= 0 || ver > p.LatestVersion {
|
|
return nil, errutil.UserError{Err: "invalid key version"}
|
|
}
|
|
|
|
// Fast-path non-derived keys
|
|
if !p.Derived {
|
|
return p.Keys[ver].AESKey, nil
|
|
}
|
|
|
|
// Ensure a context is provided
|
|
if len(context) == 0 {
|
|
return nil, errutil.UserError{Err: "missing 'context' for key deriviation. The key was created using a derived key, which means additional, per-request information must be included in order to encrypt or decrypt information"}
|
|
}
|
|
|
|
switch p.KDF {
|
|
case Kdf_hmac_sha256_counter:
|
|
prf := kdf.HMACSHA256PRF
|
|
prfLen := kdf.HMACSHA256PRFLen
|
|
return kdf.CounterMode(prf, prfLen, p.Keys[ver].AESKey, context, 256)
|
|
case Kdf_hkdf_sha256:
|
|
reader := hkdf.New(sha256.New, p.Keys[ver].AESKey, nil, context)
|
|
derBytes := bytes.NewBuffer(nil)
|
|
derBytes.Grow(32)
|
|
limReader := &io.LimitedReader{
|
|
R: reader,
|
|
N: 32,
|
|
}
|
|
n, err := derBytes.ReadFrom(limReader)
|
|
if err != nil {
|
|
return nil, errutil.InternalError{Err: fmt.Sprintf("error reading returned derived bytes: %v", err)}
|
|
}
|
|
if n != 32 {
|
|
return nil, errutil.InternalError{Err: fmt.Sprintf("unable to read enough derived bytes, needed 32, got %d", n)}
|
|
}
|
|
return derBytes.Bytes(), nil
|
|
default:
|
|
return nil, errutil.InternalError{Err: "unsupported key derivation mode"}
|
|
}
|
|
}
|
|
|
|
func (p *Policy) Encrypt(context, nonce []byte, value string) (string, error) {
|
|
if !p.Type.EncryptionSupported() {
|
|
return "", errutil.UserError{Err: fmt.Sprintf("message encryption not supported for key type %v", p.Type)}
|
|
}
|
|
|
|
// Guard against a potentially invalid key type
|
|
switch p.Type {
|
|
case KeyType_AES256_GCM96:
|
|
default:
|
|
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
|
|
}
|
|
|
|
// Decode the plaintext value
|
|
plaintext, err := base64.StdEncoding.DecodeString(value)
|
|
if err != nil {
|
|
return "", errutil.UserError{Err: "failed to base64-decode plaintext"}
|
|
}
|
|
|
|
// Derive the key that should be used
|
|
key, err := p.DeriveKey(context, p.LatestVersion)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
// Guard against a potentially invalid key type
|
|
switch p.Type {
|
|
case KeyType_AES256_GCM96:
|
|
default:
|
|
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
|
|
}
|
|
|
|
// Setup the cipher
|
|
aesCipher, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return "", errutil.InternalError{Err: err.Error()}
|
|
}
|
|
|
|
// Setup the GCM AEAD
|
|
gcm, err := cipher.NewGCM(aesCipher)
|
|
if err != nil {
|
|
return "", errutil.InternalError{Err: err.Error()}
|
|
}
|
|
|
|
if p.ConvergentEncryption {
|
|
switch p.ConvergentVersion {
|
|
case 1:
|
|
if len(nonce) != gcm.NonceSize() {
|
|
return "", errutil.UserError{Err: fmt.Sprintf("base64-decoded nonce must be %d bytes long when using convergent encryption with this key", gcm.NonceSize())}
|
|
}
|
|
default:
|
|
nonceHmac := hmac.New(sha256.New, context)
|
|
nonceHmac.Write(plaintext)
|
|
nonceSum := nonceHmac.Sum(nil)
|
|
nonce = nonceSum[:gcm.NonceSize()]
|
|
}
|
|
} else {
|
|
// Compute random nonce
|
|
nonce, err = uuid.GenerateRandomBytes(gcm.NonceSize())
|
|
if err != nil {
|
|
return "", errutil.InternalError{Err: err.Error()}
|
|
}
|
|
}
|
|
|
|
// Encrypt and tag with GCM
|
|
out := gcm.Seal(nil, nonce, plaintext, nil)
|
|
|
|
// Place the encrypted data after the nonce
|
|
full := out
|
|
if !p.ConvergentEncryption || p.ConvergentVersion > 1 {
|
|
full = append(nonce, out...)
|
|
}
|
|
|
|
// Convert to base64
|
|
encoded := base64.StdEncoding.EncodeToString(full)
|
|
|
|
// Prepend some information
|
|
encoded = "vault:v" + strconv.Itoa(p.LatestVersion) + ":" + encoded
|
|
|
|
return encoded, nil
|
|
}
|
|
|
|
func (p *Policy) Decrypt(context, nonce []byte, value string) (string, error) {
|
|
if !p.Type.DecryptionSupported() {
|
|
return "", errutil.UserError{Err: fmt.Sprintf("message decryption not supported for key type %v", p.Type)}
|
|
}
|
|
|
|
// Verify the prefix
|
|
if !strings.HasPrefix(value, "vault:v") {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: no prefix"}
|
|
}
|
|
|
|
if p.ConvergentEncryption && p.ConvergentVersion == 1 && (nonce == nil || len(nonce) == 0) {
|
|
return "", errutil.UserError{Err: "invalid convergent nonce supplied"}
|
|
}
|
|
|
|
splitVerCiphertext := strings.SplitN(strings.TrimPrefix(value, "vault:v"), ":", 2)
|
|
if len(splitVerCiphertext) != 2 {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: wrong number of fields"}
|
|
}
|
|
|
|
ver, err := strconv.Atoi(splitVerCiphertext[0])
|
|
if err != nil {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: version number could not be decoded"}
|
|
}
|
|
|
|
if ver == 0 {
|
|
// Compatibility mode with initial implementation, where keys start at
|
|
// zero
|
|
ver = 1
|
|
}
|
|
|
|
if ver > p.LatestVersion {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: version is too new"}
|
|
}
|
|
|
|
if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion {
|
|
return "", errutil.UserError{Err: ErrTooOld}
|
|
}
|
|
|
|
// Derive the key that should be used
|
|
key, err := p.DeriveKey(context, ver)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
// Guard against a potentially invalid key type
|
|
switch p.Type {
|
|
case KeyType_AES256_GCM96:
|
|
default:
|
|
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
|
|
}
|
|
|
|
// Decode the base64
|
|
decoded, err := base64.StdEncoding.DecodeString(splitVerCiphertext[1])
|
|
if err != nil {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: could not decode base64"}
|
|
}
|
|
|
|
// Setup the cipher
|
|
aesCipher, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return "", errutil.InternalError{Err: err.Error()}
|
|
}
|
|
|
|
// Setup the GCM AEAD
|
|
gcm, err := cipher.NewGCM(aesCipher)
|
|
if err != nil {
|
|
return "", errutil.InternalError{Err: err.Error()}
|
|
}
|
|
|
|
// Extract the nonce and ciphertext
|
|
var ciphertext []byte
|
|
if p.ConvergentEncryption && p.ConvergentVersion < 2 {
|
|
ciphertext = decoded
|
|
} else {
|
|
nonce = decoded[:gcm.NonceSize()]
|
|
ciphertext = decoded[gcm.NonceSize():]
|
|
}
|
|
|
|
// Verify and Decrypt
|
|
plain, err := gcm.Open(nil, nonce, ciphertext, nil)
|
|
if err != nil {
|
|
return "", errutil.UserError{Err: "invalid ciphertext: unable to decrypt"}
|
|
}
|
|
|
|
return base64.StdEncoding.EncodeToString(plain), nil
|
|
}
|
|
|
|
func (p *Policy) HMACKey(version int) ([]byte, error) {
|
|
if version < p.MinDecryptionVersion {
|
|
return nil, fmt.Errorf("key version disallowed by policy (minimum is %d)", p.MinDecryptionVersion)
|
|
}
|
|
|
|
if version > p.LatestVersion {
|
|
return nil, fmt.Errorf("key version does not exist; latest key version is %d", p.LatestVersion)
|
|
}
|
|
|
|
if p.Keys[version].HMACKey == nil {
|
|
return nil, fmt.Errorf("no HMAC key exists for that key version")
|
|
}
|
|
|
|
return p.Keys[version].HMACKey, nil
|
|
}
|
|
|
|
func (p *Policy) Sign(hashedInput []byte) (string, error) {
|
|
if !p.Type.SigningSupported() {
|
|
return "", fmt.Errorf("message signing not supported for key type %v", p.Type)
|
|
}
|
|
|
|
var sig []byte
|
|
switch p.Type {
|
|
case KeyType_ECDSA_P256:
|
|
keyParams := p.Keys[p.LatestVersion]
|
|
key := &ecdsa.PrivateKey{
|
|
PublicKey: ecdsa.PublicKey{
|
|
Curve: elliptic.P256(),
|
|
X: keyParams.EC_X,
|
|
Y: keyParams.EC_Y,
|
|
},
|
|
D: keyParams.EC_D,
|
|
}
|
|
r, s, err := ecdsa.Sign(rand.Reader, key, hashedInput)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
marshaledSig, err := asn1.Marshal(ecdsaSignature{
|
|
R: r,
|
|
S: s,
|
|
})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
sig = marshaledSig
|
|
|
|
default:
|
|
return "", fmt.Errorf("unsupported key type %v", p.Type)
|
|
}
|
|
|
|
// Convert to base64
|
|
encoded := base64.StdEncoding.EncodeToString(sig)
|
|
|
|
// Prepend some information
|
|
encoded = "vault:v" + strconv.Itoa(p.LatestVersion) + ":" + encoded
|
|
|
|
return encoded, nil
|
|
}
|
|
|
|
func (p *Policy) VerifySignature(hashedInput []byte, sig string) (bool, error) {
|
|
if !p.Type.SigningSupported() {
|
|
return false, errutil.UserError{Err: fmt.Sprintf("message verification not supported for key type %v", p.Type)}
|
|
}
|
|
|
|
// Verify the prefix
|
|
if !strings.HasPrefix(sig, "vault:v") {
|
|
return false, errutil.UserError{Err: "invalid signature: no prefix"}
|
|
}
|
|
|
|
splitVerSig := strings.SplitN(strings.TrimPrefix(sig, "vault:v"), ":", 2)
|
|
if len(splitVerSig) != 2 {
|
|
return false, errutil.UserError{Err: "invalid signature: wrong number of fields"}
|
|
}
|
|
|
|
ver, err := strconv.Atoi(splitVerSig[0])
|
|
if err != nil {
|
|
return false, errutil.UserError{Err: "invalid signature: version number could not be decoded"}
|
|
}
|
|
|
|
if ver > p.LatestVersion {
|
|
return false, errutil.UserError{Err: "invalid signature: version is too new"}
|
|
}
|
|
|
|
if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion {
|
|
return false, errutil.UserError{Err: ErrTooOld}
|
|
}
|
|
|
|
switch p.Type {
|
|
case KeyType_ECDSA_P256:
|
|
asn1Sig, err := base64.StdEncoding.DecodeString(splitVerSig[1])
|
|
if err != nil {
|
|
return false, errutil.UserError{Err: "invalid base64 signature value"}
|
|
}
|
|
|
|
var ecdsaSig ecdsaSignature
|
|
rest, err := asn1.Unmarshal(asn1Sig, &ecdsaSig)
|
|
if err != nil {
|
|
return false, errutil.UserError{Err: "supplied signature is invalid"}
|
|
}
|
|
if rest != nil && len(rest) != 0 {
|
|
return false, errutil.UserError{Err: "supplied signature contains extra data"}
|
|
}
|
|
|
|
keyParams := p.Keys[ver]
|
|
key := &ecdsa.PublicKey{
|
|
Curve: elliptic.P256(),
|
|
X: keyParams.EC_X,
|
|
Y: keyParams.EC_Y,
|
|
}
|
|
|
|
return ecdsa.Verify(key, hashedInput, ecdsaSig.R, ecdsaSig.S), nil
|
|
default:
|
|
return false, errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
|
|
}
|
|
|
|
return false, errutil.InternalError{Err: "no valid key type found"}
|
|
}
|
|
|
|
func (p *Policy) Rotate(storage logical.Storage) error {
|
|
if p.Keys == nil {
|
|
// This is an initial key rotation when generating a new policy. We
|
|
// don't need to call migrate here because if we've called getPolicy to
|
|
// get the policy in the first place it will have been run.
|
|
p.Keys = keyEntryMap{}
|
|
}
|
|
|
|
p.LatestVersion += 1
|
|
entry := KeyEntry{
|
|
CreationTime: time.Now().Unix(),
|
|
}
|
|
|
|
hmacKey, err := uuid.GenerateRandomBytes(32)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entry.HMACKey = hmacKey
|
|
|
|
switch p.Type {
|
|
case KeyType_AES256_GCM96:
|
|
// Generate a 256bit key
|
|
newKey, err := uuid.GenerateRandomBytes(32)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entry.AESKey = newKey
|
|
|
|
case KeyType_ECDSA_P256:
|
|
privKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entry.EC_D = privKey.D
|
|
entry.EC_X = privKey.X
|
|
entry.EC_Y = privKey.Y
|
|
derBytes, err := x509.MarshalPKIXPublicKey(privKey.Public())
|
|
if err != nil {
|
|
return fmt.Errorf("error marshaling public key: %s", err)
|
|
}
|
|
pemBlock := &pem.Block{
|
|
Type: "PUBLIC KEY",
|
|
Bytes: derBytes,
|
|
}
|
|
pemBytes := pem.EncodeToMemory(pemBlock)
|
|
if pemBytes == nil || len(pemBytes) == 0 {
|
|
return fmt.Errorf("error PEM-encoding public key")
|
|
}
|
|
entry.FormattedPublicKey = string(pemBytes)
|
|
}
|
|
|
|
p.Keys[p.LatestVersion] = entry
|
|
|
|
// This ensures that with new key creations min decryption version is set
|
|
// to 1 rather than the int default of 0, since keys start at 1 (either
|
|
// fresh or after migration to the key map)
|
|
if p.MinDecryptionVersion == 0 {
|
|
p.MinDecryptionVersion = 1
|
|
}
|
|
|
|
return p.Persist(storage)
|
|
}
|
|
|
|
func (p *Policy) MigrateKeyToKeysMap() {
|
|
p.Keys = keyEntryMap{
|
|
1: KeyEntry{
|
|
AESKey: p.Key,
|
|
CreationTime: time.Now().Unix(),
|
|
},
|
|
}
|
|
p.Key = nil
|
|
}
|