open-vault/vault/acl.go

760 lines
22 KiB
Go

package vault
import (
"context"
"fmt"
"reflect"
"sort"
"strings"
"github.com/armon/go-radix"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-secure-stdlib/strutil"
"github.com/hashicorp/vault/helper/identity"
"github.com/hashicorp/vault/helper/namespace"
"github.com/hashicorp/vault/sdk/logical"
"github.com/mitchellh/copystructure"
)
// ACL is used to wrap a set of policies to provide
// an efficient interface for access control.
type ACL struct {
// exactRules contains the path policies that are exact
exactRules *radix.Tree
// prefixRules contains the path policies that are a prefix
prefixRules *radix.Tree
segmentWildcardPaths map[string]interface{}
// root is enabled if the "root" named policy is present.
root bool
// Stores policies that are actually RGPs for later fetching
rgpPolicies []*Policy
}
type PolicyCheckOpts struct {
RootPrivsRequired bool
Unauth bool
}
type AuthResults struct {
ACLResults *ACLResults
SentinelResults *SentinelResults
Allowed bool
RootPrivs bool
DeniedError bool
Error *multierror.Error
}
type ACLResults struct {
Allowed bool
RootPrivs bool
IsRoot bool
MFAMethods []string
ControlGroup *ControlGroup
CapabilitiesBitmap uint32
GrantingPolicies []logical.PolicyInfo
}
type SentinelResults struct {
GrantingPolicies []logical.PolicyInfo
}
// NewACL is used to construct a policy based ACL from a set of policies.
func NewACL(ctx context.Context, policies []*Policy) (*ACL, error) {
// Initialize
a := &ACL{
exactRules: radix.New(),
prefixRules: radix.New(),
segmentWildcardPaths: make(map[string]interface{}, len(policies)),
root: false,
}
ns, err := namespace.FromContext(ctx)
if err != nil {
return nil, err
}
if ns == nil {
return nil, namespace.ErrNoNamespace
}
// Inject each policy
for _, policy := range policies {
// Ignore a nil policy object
if policy == nil {
continue
}
switch policy.Type {
case PolicyTypeACL:
case PolicyTypeRGP:
a.rgpPolicies = append(a.rgpPolicies, policy)
continue
default:
return nil, fmt.Errorf("unable to parse policy (wrong type)")
}
// Check if this is root
if policy.Name == "root" {
if ns.ID != namespace.RootNamespaceID {
return nil, fmt.Errorf("root policy is only allowed in root namespace")
}
if len(policies) != 1 {
return nil, fmt.Errorf("other policies present along with root")
}
a.root = true
}
for _, pc := range policy.Paths {
var raw interface{}
var ok bool
var tree *radix.Tree
switch {
case pc.HasSegmentWildcards:
raw, ok = a.segmentWildcardPaths[pc.Path]
default:
// Check which tree to use
tree = a.exactRules
if pc.IsPrefix {
tree = a.prefixRules
}
// Check for an existing policy
raw, ok = tree.Get(pc.Path)
}
if !ok {
clonedPerms, err := pc.Permissions.Clone()
if err != nil {
return nil, fmt.Errorf("error cloning ACL permissions: %w", err)
}
// Store this policy name as the policy that permits these
// capabilities
clonedPerms.GrantingPoliciesMap = addGrantingPoliciesToMap(nil, policy, clonedPerms.CapabilitiesBitmap)
switch {
case pc.HasSegmentWildcards:
a.segmentWildcardPaths[pc.Path] = clonedPerms
default:
tree.Insert(pc.Path, clonedPerms)
}
continue
}
// these are the ones already in the tree
existingPerms := raw.(*ACLPermissions)
switch {
case existingPerms.CapabilitiesBitmap&DenyCapabilityInt > 0:
// If we are explicitly denied in the existing capability set,
// don't save anything else
continue
case pc.Permissions.CapabilitiesBitmap&DenyCapabilityInt > 0:
// If this new policy explicitly denies, only save the deny value
existingPerms.CapabilitiesBitmap = DenyCapabilityInt
existingPerms.AllowedParameters = nil
existingPerms.DeniedParameters = nil
goto INSERT
default:
// Insert the capabilities in this new policy into the existing
// value
existingPerms.CapabilitiesBitmap = existingPerms.CapabilitiesBitmap | pc.Permissions.CapabilitiesBitmap
existingPerms.GrantingPoliciesMap = addGrantingPoliciesToMap(existingPerms.GrantingPoliciesMap, policy, pc.Permissions.CapabilitiesBitmap)
}
// Note: In these stanzas, we're preferring minimum lifetimes. So
// we take the lesser of two specified max values, or we take the
// lesser of two specified min values, the idea being, allowing
// token lifetime to be minimum possible.
//
// If we have an existing max, and we either don't have a current
// max, or the current is greater than the previous, use the
// existing.
if pc.Permissions.MaxWrappingTTL > 0 &&
(existingPerms.MaxWrappingTTL == 0 ||
pc.Permissions.MaxWrappingTTL < existingPerms.MaxWrappingTTL) {
existingPerms.MaxWrappingTTL = pc.Permissions.MaxWrappingTTL
}
// If we have an existing min, and we either don't have a current
// min, or the current is greater than the previous, use the
// existing
if pc.Permissions.MinWrappingTTL > 0 &&
(existingPerms.MinWrappingTTL == 0 ||
pc.Permissions.MinWrappingTTL < existingPerms.MinWrappingTTL) {
existingPerms.MinWrappingTTL = pc.Permissions.MinWrappingTTL
}
if len(pc.Permissions.AllowedParameters) > 0 {
if existingPerms.AllowedParameters == nil {
clonedAllowed, err := copystructure.Copy(pc.Permissions.AllowedParameters)
if err != nil {
return nil, err
}
existingPerms.AllowedParameters = clonedAllowed.(map[string][]interface{})
} else {
for key, value := range pc.Permissions.AllowedParameters {
pcValue, ok := existingPerms.AllowedParameters[key]
// If an empty array exist it should overwrite any other
// value.
if len(value) == 0 || (ok && len(pcValue) == 0) {
existingPerms.AllowedParameters[key] = []interface{}{}
} else {
// Merge the two maps, appending values on key conflict.
existingPerms.AllowedParameters[key] = append(value, existingPerms.AllowedParameters[key]...)
}
}
}
}
if len(pc.Permissions.DeniedParameters) > 0 {
if existingPerms.DeniedParameters == nil {
clonedDenied, err := copystructure.Copy(pc.Permissions.DeniedParameters)
if err != nil {
return nil, err
}
existingPerms.DeniedParameters = clonedDenied.(map[string][]interface{})
} else {
for key, value := range pc.Permissions.DeniedParameters {
pcValue, ok := existingPerms.DeniedParameters[key]
// If an empty array exist it should overwrite any other
// value.
if len(value) == 0 || (ok && len(pcValue) == 0) {
existingPerms.DeniedParameters[key] = []interface{}{}
} else {
// Merge the two maps, appending values on key conflict.
existingPerms.DeniedParameters[key] = append(value, existingPerms.DeniedParameters[key]...)
}
}
}
}
if len(pc.Permissions.RequiredParameters) > 0 {
if len(existingPerms.RequiredParameters) == 0 {
existingPerms.RequiredParameters = pc.Permissions.RequiredParameters
} else {
for _, v := range pc.Permissions.RequiredParameters {
if !strutil.StrListContains(existingPerms.RequiredParameters, v) {
existingPerms.RequiredParameters = append(existingPerms.RequiredParameters, v)
}
}
}
}
if len(pc.Permissions.MFAMethods) > 0 {
if existingPerms.MFAMethods == nil {
existingPerms.MFAMethods = pc.Permissions.MFAMethods
} else {
existingPerms.MFAMethods = append(existingPerms.MFAMethods, pc.Permissions.MFAMethods...)
}
existingPerms.MFAMethods = strutil.RemoveDuplicates(existingPerms.MFAMethods, false)
}
// No need to dedupe this list since any authorization can satisfy any factor, so long as
// the factor matches the specified permission requested.
if pc.Permissions.ControlGroup != nil {
if len(pc.Permissions.ControlGroup.Factors) > 0 {
if existingPerms.ControlGroup == nil {
existingPerms.ControlGroup = pc.Permissions.ControlGroup
} else {
existingPerms.ControlGroup.Factors = append(existingPerms.ControlGroup.Factors, pc.Permissions.ControlGroup.Factors...)
}
}
}
INSERT:
switch {
case pc.HasSegmentWildcards:
a.segmentWildcardPaths[pc.Path] = existingPerms
default:
tree.Insert(pc.Path, existingPerms)
}
}
}
return a, nil
}
func (a *ACL) Capabilities(ctx context.Context, path string) (pathCapabilities []string) {
req := &logical.Request{
Path: path,
// doesn't matter, but use List to trigger fallback behavior so we can
// model real behavior
Operation: logical.ListOperation,
}
res := a.AllowOperation(ctx, req, true)
if res.IsRoot {
return []string{RootCapability}
}
capabilities := res.CapabilitiesBitmap
if capabilities&SudoCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, SudoCapability)
}
if capabilities&ReadCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, ReadCapability)
}
if capabilities&ListCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, ListCapability)
}
if capabilities&UpdateCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, UpdateCapability)
}
if capabilities&DeleteCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, DeleteCapability)
}
if capabilities&CreateCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, CreateCapability)
}
if capabilities&PatchCapabilityInt > 0 {
pathCapabilities = append(pathCapabilities, PatchCapability)
}
// If "deny" is explicitly set or if the path has no capabilities at all,
// set the path capabilities to "deny"
if capabilities&DenyCapabilityInt > 0 || len(pathCapabilities) == 0 {
pathCapabilities = []string{DenyCapability}
}
return
}
// AllowOperation is used to check if the given operation is permitted.
func (a *ACL) AllowOperation(ctx context.Context, req *logical.Request, capCheckOnly bool) (ret *ACLResults) {
ret = new(ACLResults)
// Fast-path root
if a.root {
ret.Allowed = true
ret.RootPrivs = true
ret.IsRoot = true
ret.GrantingPolicies = []logical.PolicyInfo{{
Name: "root",
NamespaceId: "root",
Type: "acl",
}}
return
}
op := req.Operation
// Help is always allowed
if op == logical.HelpOperation {
ret.Allowed = true
return
}
var permissions *ACLPermissions
ns, err := namespace.FromContext(ctx)
if err != nil {
return
}
path := ns.Path + req.Path
// The request path should take care of this already but this is useful for
// tests and as defense in depth
for {
if len(path) > 0 && path[0] == '/' {
path = path[1:]
} else {
break
}
}
// Find an exact matching rule, look for prefix if no match
var capabilities uint32
raw, ok := a.exactRules.Get(path)
if ok {
permissions = raw.(*ACLPermissions)
capabilities = permissions.CapabilitiesBitmap
goto CHECK
}
if op == logical.ListOperation {
raw, ok = a.exactRules.Get(strings.TrimSuffix(path, "/"))
if ok {
permissions = raw.(*ACLPermissions)
capabilities = permissions.CapabilitiesBitmap
goto CHECK
}
}
permissions = a.CheckAllowedFromNonExactPaths(path, false)
if permissions != nil {
capabilities = permissions.CapabilitiesBitmap
goto CHECK
}
// No exact, prefix, or segment wildcard paths found, return without
// setting allowed
return
CHECK:
// Check if the minimum permissions are met
// If "deny" has been explicitly set, only deny will be in the map, so we
// only need to check for the existence of other values
ret.RootPrivs = capabilities&SudoCapabilityInt > 0
// This is after the RootPrivs check so we can gate on it being from sudo
// rather than policy root
if capCheckOnly {
ret.CapabilitiesBitmap = capabilities
return ret
}
ret.MFAMethods = permissions.MFAMethods
ret.ControlGroup = permissions.ControlGroup
var grantingPolicies []logical.PolicyInfo
operationAllowed := false
switch op {
case logical.ReadOperation:
operationAllowed = capabilities&ReadCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[ReadCapabilityInt]
case logical.ListOperation:
operationAllowed = capabilities&ListCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[ListCapabilityInt]
case logical.UpdateOperation:
operationAllowed = capabilities&UpdateCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[UpdateCapabilityInt]
case logical.DeleteOperation:
operationAllowed = capabilities&DeleteCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[DeleteCapabilityInt]
case logical.CreateOperation:
operationAllowed = capabilities&CreateCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[CreateCapabilityInt]
case logical.PatchOperation:
operationAllowed = capabilities&PatchCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[PatchCapabilityInt]
// These three re-use UpdateCapabilityInt since that's the most appropriate
// capability/operation mapping
case logical.RevokeOperation, logical.RenewOperation, logical.RollbackOperation:
operationAllowed = capabilities&UpdateCapabilityInt > 0
grantingPolicies = permissions.GrantingPoliciesMap[UpdateCapabilityInt]
default:
return
}
if !operationAllowed {
return
}
ret.GrantingPolicies = grantingPolicies
if permissions.MaxWrappingTTL > 0 {
if req.WrapInfo == nil || req.WrapInfo.TTL > permissions.MaxWrappingTTL {
return
}
}
if permissions.MinWrappingTTL > 0 {
if req.WrapInfo == nil || req.WrapInfo.TTL < permissions.MinWrappingTTL {
return
}
}
// This situation can happen because of merging, even though in a single
// path statement we check on ingress
if permissions.MinWrappingTTL != 0 &&
permissions.MaxWrappingTTL != 0 &&
permissions.MaxWrappingTTL < permissions.MinWrappingTTL {
return
}
// Only check parameter permissions for operations that can modify
// parameters.
if op == logical.ReadOperation || op == logical.UpdateOperation || op == logical.CreateOperation || op == logical.PatchOperation {
for _, parameter := range permissions.RequiredParameters {
if _, ok := req.Data[strings.ToLower(parameter)]; !ok {
return
}
}
// If there are no data fields, allow
if len(req.Data) == 0 {
ret.Allowed = true
return
}
if len(permissions.DeniedParameters) == 0 {
goto ALLOWED_PARAMETERS
}
// Check if all parameters have been denied
if _, ok := permissions.DeniedParameters["*"]; ok {
return
}
for parameter, value := range req.Data {
// Check if parameter has been explicitly denied
if valueSlice, ok := permissions.DeniedParameters[strings.ToLower(parameter)]; ok {
// If the value exists in denied values slice, deny
if valueInParameterList(value, valueSlice) {
return
}
}
}
ALLOWED_PARAMETERS:
// If we don't have any allowed parameters set, allow
if len(permissions.AllowedParameters) == 0 {
ret.Allowed = true
return
}
_, allowedAll := permissions.AllowedParameters["*"]
if len(permissions.AllowedParameters) == 1 && allowedAll {
ret.Allowed = true
return
}
for parameter, value := range req.Data {
valueSlice, ok := permissions.AllowedParameters[strings.ToLower(parameter)]
// Requested parameter is not in allowed list
if !ok && !allowedAll {
return
}
// If the value doesn't exists in the allowed values slice,
// deny
if ok && !valueInParameterList(value, valueSlice) {
return
}
}
}
ret.Allowed = true
return
}
type wcPathDescr struct {
firstWCOrGlob int
wildcards int
isPrefix bool
wcPath string
perms *ACLPermissions
}
// CheckAllowedFromNonExactPaths returns permissions corresponding to a
// matching path with wildcards/globs. If bareMount is true, the path should
// correspond to a mount prefix, and what is returned is either a non-nil set
// of permissions from some allowed path underneath the mount (for use in mount
// access checks), or nil indicating no non-deny permissions were found.
func (a *ACL) CheckAllowedFromNonExactPaths(path string, bareMount bool) *ACLPermissions {
wcPathDescrs := make([]wcPathDescr, 0, len(a.segmentWildcardPaths)+1)
less := func(i, j int) bool {
// In the case of multiple matches, we use this priority order,
// which tries to most closely match longest-prefix:
//
// * First glob or wildcard position (prefer foo/a* over foo/+,
// foo/bar/+/baz over foo/+/bar/baz)
// * Whether it's a prefix (prefer foo/+/bar over foo/+/ba*,
// foo/+ over foo/*)
// * Number of wildcard segments (prefer foo/bar/+/baz over foo/+/+/baz)
// * Length check (prefer foo/+/bar/ba* over foo/+/bar/b*)
// * Lexicographical ordering (preferring less, arbitrarily)
//
// That final case (lexigraphical) should never really come up. It's more
// of a throwing-up-hands scenario akin to panic("should not be here")
// statements, but less panicky.
pdi, pdj := wcPathDescrs[i], wcPathDescrs[j]
// If the first wildcard (+) or glob (*) occurs earlier in pdi,
// pdi is lower priority
if pdi.firstWCOrGlob < pdj.firstWCOrGlob {
return true
} else if pdi.firstWCOrGlob > pdj.firstWCOrGlob {
return false
}
// If pdi ends in * and pdj doesn't, pdi is lower priority
if pdi.isPrefix && !pdj.isPrefix {
return true
} else if !pdi.isPrefix && pdj.isPrefix {
return false
}
// If pdi has more wc segs, pdi is lower priority
if pdi.wildcards > pdj.wildcards {
return true
} else if pdi.wildcards < pdj.wildcards {
return false
}
// If pdi is shorter, it is lower priority
if len(pdi.wcPath) < len(pdj.wcPath) {
return true
} else if len(pdi.wcPath) > len(pdj.wcPath) {
return false
}
// If pdi is smaller lexicographically, it is lower priority
if pdi.wcPath < pdj.wcPath {
return true
} else if pdi.wcPath > pdj.wcPath {
return false
}
return false
}
// Find a prefix rule if any.
{
prefix, raw, ok := a.prefixRules.LongestPrefix(path)
if ok {
if len(a.segmentWildcardPaths) == 0 {
return raw.(*ACLPermissions)
}
wcPathDescrs = append(wcPathDescrs, wcPathDescr{
firstWCOrGlob: len(prefix),
wcPath: prefix,
isPrefix: true,
perms: raw.(*ACLPermissions),
})
}
}
if len(a.segmentWildcardPaths) == 0 {
return nil
}
pathParts := strings.Split(path, "/")
SWCPATH:
for fullWCPath := range a.segmentWildcardPaths {
if fullWCPath == "" {
continue
}
pd := wcPathDescr{firstWCOrGlob: strings.Index(fullWCPath, "+")}
currWCPath := fullWCPath
if currWCPath[len(currWCPath)-1] == '*' {
pd.isPrefix = true
currWCPath = currWCPath[0 : len(currWCPath)-1]
}
pd.wcPath = currWCPath
splitCurrWCPath := strings.Split(currWCPath, "/")
if !bareMount && len(pathParts) < len(splitCurrWCPath) {
// check if the path coming in is shorter; if so it can't match
continue
}
if !bareMount && !pd.isPrefix && len(splitCurrWCPath) != len(pathParts) {
// If it's not a prefix we expect the same number of segments
continue
}
segments := make([]string, 0, len(splitCurrWCPath))
for i, aclPart := range splitCurrWCPath {
switch {
case aclPart == "+":
pd.wildcards++
segments = append(segments, pathParts[i])
case aclPart == pathParts[i]:
segments = append(segments, pathParts[i])
case pd.isPrefix && i == len(splitCurrWCPath)-1 && strings.HasPrefix(pathParts[i], aclPart):
segments = append(segments, pathParts[i:]...)
case !bareMount:
// Found a mismatch, give up on this segmentWildcardPath
continue SWCPATH
}
// -2 because we're always invoked with a trailing "/" in case bareMount.
if bareMount && i == len(pathParts)-2 {
joinedPath := strings.Join(segments, "/") + "/"
// Check the current joined path so far. If we find a prefix,
// check permissions. If they're defined but not deny, success.
if strings.HasPrefix(joinedPath, path) {
permissions := a.segmentWildcardPaths[fullWCPath].(*ACLPermissions)
if permissions.CapabilitiesBitmap&DenyCapabilityInt == 0 && permissions.CapabilitiesBitmap > 0 {
return permissions
}
}
continue SWCPATH
}
}
pd.perms = a.segmentWildcardPaths[fullWCPath].(*ACLPermissions)
wcPathDescrs = append(wcPathDescrs, pd)
}
if bareMount || len(wcPathDescrs) == 0 {
return nil
}
// We don't do this in the bare mount check because we don't care about
// priority, we only care about any capability at all.
sort.Slice(wcPathDescrs, less)
return wcPathDescrs[len(wcPathDescrs)-1].perms
}
func (c *Core) performPolicyChecks(ctx context.Context, acl *ACL, te *logical.TokenEntry, req *logical.Request, inEntity *identity.Entity, opts *PolicyCheckOpts) *AuthResults {
ret := new(AuthResults)
// First, perform normal ACL checks if requested. The only time no ACL
// should be applied is if we are only processing EGPs against a login
// path in which case opts.Unauth will be set.
if acl != nil && !opts.Unauth {
ret.ACLResults = acl.AllowOperation(ctx, req, false)
ret.RootPrivs = ret.ACLResults.RootPrivs
// Root is always allowed; skip Sentinel/MFA checks
if ret.ACLResults.IsRoot {
// logger.Warn("token is root, skipping checks")
ret.Allowed = true
return ret
}
if !ret.ACLResults.Allowed {
return ret
}
if !ret.RootPrivs && opts.RootPrivsRequired {
return ret
}
}
c.performEntPolicyChecks(ctx, acl, te, req, inEntity, opts, ret)
return ret
}
func valueInParameterList(v interface{}, list []interface{}) bool {
// Empty list is equivalent to the item always existing in the list
if len(list) == 0 {
return true
}
return valueInSlice(v, list)
}
func valueInSlice(v interface{}, list []interface{}) bool {
for _, el := range list {
if el == nil || v == nil {
// It doesn't seem possible to set up a nil entry in the list, but it is possible
// to pass in a null entry in the API request being checked. Just in case,
// nil will match nil.
if el == v {
return true
}
} else if reflect.TypeOf(el).String() == "string" && reflect.TypeOf(v).String() == "string" {
item := el.(string)
val := v.(string)
if strutil.GlobbedStringsMatch(item, val) {
return true
}
} else if reflect.DeepEqual(el, v) {
return true
}
}
return false
}