open-vault/vault/barrier_aes_gcm.go
2015-04-08 16:43:17 -07:00

333 lines
7.9 KiB
Go

package vault
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/json"
"fmt"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/vault/physical"
)
const (
// aesgcmVersionByte is prefixed to a message to allow for
// future versioning of barrier implementations.
aesgcmVersionByte = 0x1
)
// barrierInit is the JSON encoded value stored
type barrierInit struct {
Version int // Version is the current format version
Key []byte // Key is the primary encryption key
}
// AESGCMBarrier is a SecurityBarrier implementation that
// uses a 128bit AES encryption cipher with the Galois Counter Mode.
// AES-GCM is high performance, and provides both confidentiality
// and integrity.
type AESGCMBarrier struct {
backend physical.Backend
l sync.RWMutex
sealed bool
// primary is the AEAD keyed from the encryption key.
// This is the cipher that should be used to encrypt/decrypt
// all the underlying values. It will be available if the
// barrier is unsealed.
primary cipher.AEAD
}
// NewAESGCMBarrier is used to construct a new barrier that uses
// the provided physical backend for storage.
func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) {
b := &AESGCMBarrier{
backend: physical,
sealed: true,
}
return b, nil
}
// Initialized checks if the barrier has been initialized
// and has a master key set.
func (b *AESGCMBarrier) Initialized() (bool, error) {
// Read the init sentinel file
out, err := b.backend.Get(barrierInitPath)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %v", err)
}
return out != nil, nil
}
// Initialize works only if the barrier has not been initialized
// and makes use of the given master key.
func (b *AESGCMBarrier) Initialize(key []byte) error {
// Verify the key size
if len(key) != aes.BlockSize {
return fmt.Errorf("Key size must be %d", aes.BlockSize)
}
// Check if already initialized
if alreadyInit, err := b.Initialized(); err != nil {
return err
} else if alreadyInit {
return ErrBarrierAlreadyInit
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Generate encryption key
encrypt, err := b.GenerateKey()
if err != nil {
return fmt.Errorf("failed to generate encryption key: %v", err)
}
defer memzero(encrypt)
// Create the barrier init entry
init := barrierInit{
Version: 1,
Key: encrypt,
}
buf, err := json.Marshal(init)
if err != nil {
return fmt.Errorf("failed to create barrier entry: %v", err)
}
defer memzero(buf)
// Encrypt the barrier init value
value := b.encrypt(gcm, buf)
// Create the barrierInitPath
pe := &physical.Entry{
Key: barrierInitPath,
Value: value,
}
if err := b.backend.Put(pe); err != nil {
return fmt.Errorf("failed to create initialization key: %v", err)
}
return nil
}
// GenerateKey is used to generate a new key
func (b *AESGCMBarrier) GenerateKey() ([]byte, error) {
buf := make([]byte, aes.BlockSize)
_, err := rand.Read(buf)
return buf, err
}
// KeyLength is used to sanity check a key
func (b *AESGCMBarrier) KeyLength() (int, int) {
return aes.BlockSize, aes.BlockSize
}
// Sealed checks if the barrier has been unlocked yet. The Barrier
// is not expected to be able to perform any CRUD until it is unsealed.
func (b *AESGCMBarrier) Sealed() (bool, error) {
b.l.RLock()
defer b.l.RUnlock()
return b.sealed, nil
}
// Unseal is used to provide the master key which permits the barrier
// to be unsealed. If the key is not correct, the barrier remains sealed.
func (b *AESGCMBarrier) Unseal(key []byte) error {
b.l.Lock()
defer b.l.Unlock()
// Do nothing if already unsealed
if !b.sealed {
return nil
}
// Read the barrier initialization key
out, err := b.backend.Get(barrierInitPath)
if err != nil {
return fmt.Errorf("failed to check for initialization: %v", err)
}
if out == nil {
return ErrBarrierNotInit
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Decrypt the barrier init key
plain, err := b.decrypt(gcm, out.Value)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
defer memzero(plain)
// Unmarshal the barrier init
var init barrierInit
if err := json.Unmarshal(plain, &init); err != nil {
return fmt.Errorf("failed to unmarshal barrier init file")
}
defer memzero(init.Key)
// Initialize the master encryption key
b.primary, err = b.aeadFromKey(init.Key)
if err != nil {
return err
}
// Set the vault as unsealed
b.sealed = false
return nil
}
// Seal is used to re-seal the barrier. This requires the barrier to
// be unsealed again to perform any further operations.
func (b *AESGCMBarrier) Seal() error {
b.l.Lock()
defer b.l.Unlock()
// Remove the primary key, and seal the vault
b.primary = nil
b.sealed = true
return nil
}
// Put is used to insert or update an entry
func (b *AESGCMBarrier) Put(entry *Entry) error {
defer metrics.MeasureSince([]string{"barrier", "put"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
primary := b.primary
if primary == nil {
return ErrBarrierSealed
}
pe := &physical.Entry{
Key: entry.Key,
Value: b.encrypt(primary, entry.Value),
}
return b.backend.Put(pe)
}
// Get is used to fetch an entry
func (b *AESGCMBarrier) Get(key string) (*Entry, error) {
defer metrics.MeasureSince([]string{"barrier", "get"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
primary := b.primary
if primary == nil {
return nil, ErrBarrierSealed
}
// Read the key from the backend
pe, err := b.backend.Get(key)
if err != nil {
return nil, err
} else if pe == nil {
return nil, nil
}
// Decrypt the ciphertext
plain, err := b.decrypt(primary, pe.Value)
if err != nil {
return nil, fmt.Errorf("decryption failed: %v", err)
}
// Wrap in a logical entry
entry := &Entry{
Key: key,
Value: plain,
}
return entry, nil
}
// Delete is used to permanently delete an entry
func (b *AESGCMBarrier) Delete(key string) error {
defer metrics.MeasureSince([]string{"barrier", "delete"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
return b.backend.Delete(key)
}
// List is used ot list all the keys under a given
// prefix, up to the next prefix.
func (b *AESGCMBarrier) List(prefix string) ([]string, error) {
defer metrics.MeasureSince([]string{"barrier", "list"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
return b.backend.List(prefix)
}
// aeadFromKey returns an AES-GCM AEAD using the given key.
func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) {
// Create the AES cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return nil, fmt.Errorf("failed to create cipher: %v", err)
}
// Create the GCM mode AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return nil, fmt.Errorf("failed to initialize GCM mode")
}
return gcm, nil
}
// encrypt is used to encrypt a value
func (b *AESGCMBarrier) encrypt(gcm cipher.AEAD, plain []byte) []byte {
// Allocate the output buffer with room for version byte,
// nonce, GCM tag and the plaintext
capacity := 1 + gcm.NonceSize() + gcm.Overhead() + len(plain)
size := 1 + gcm.NonceSize()
out := make([]byte, size, capacity)
// Set the version byte
out[0] = aesgcmVersionByte
// Generate a random nonce
nonce := out[1 : 1+gcm.NonceSize()]
rand.Read(nonce)
// Seal the output
out = gcm.Seal(out, nonce, plain, nil)
return out
}
// decrypt is used to decrypt a value
func (b *AESGCMBarrier) decrypt(gcm cipher.AEAD, cipher []byte) ([]byte, error) {
// Verify the version byte
if cipher[0] != aesgcmVersionByte {
return nil, fmt.Errorf("version bytes mis-match")
}
// Capture the parts
nonce := cipher[1 : 1+gcm.NonceSize()]
raw := cipher[1+gcm.NonceSize():]
out := make([]byte, 0, len(raw)-gcm.NonceSize())
// Attempt to open
return gcm.Open(out, nonce, raw, nil)
}