open-vault/sdk/queue/priority_queue.go
Hamid Ghaf 27bb03bbc0
adding copyright header (#19555)
* adding copyright header

* fix fmt and a test
2023-03-15 09:00:52 -07:00

197 lines
6 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
// Package queue provides Vault plugins with a Priority Queue. It can be used
// as an in-memory list of queue.Item sorted by their priority, and offers
// methods to find or remove items by their key. Internally it uses
// container/heap; see Example Priority Queue:
// https://golang.org/pkg/container/heap/#example__priorityQueue
package queue
import (
"container/heap"
"errors"
"sync"
"github.com/mitchellh/copystructure"
)
// ErrEmpty is returned for queues with no items
var ErrEmpty = errors.New("queue is empty")
// ErrDuplicateItem is returned when the queue attmepts to push an item to a key that
// already exists. The queue does not attempt to update, instead returns this
// error. If an Item needs to be updated or replaced, pop the item first.
var ErrDuplicateItem = errors.New("duplicate item")
// New initializes the internal data structures and returns a new
// PriorityQueue
func New() *PriorityQueue {
pq := PriorityQueue{
data: make(queue, 0),
dataMap: make(map[string]*Item),
}
heap.Init(&pq.data)
return &pq
}
// PriorityQueue facilitates queue of Items, providing Push, Pop, and
// PopByKey convenience methods. The ordering (priority) is an int64 value
// with the smallest value is the highest priority. PriorityQueue maintains both
// an internal slice for the queue as well as a map of the same items with their
// keys as the index. This enables users to find specific items by key. The map
// must be kept in sync with the data slice.
// See https://golang.org/pkg/container/heap/#example__priorityQueue
type PriorityQueue struct {
// data is the internal structure that holds the queue, and is operated on by
// heap functions
data queue
// dataMap represents all the items in the queue, with unique indexes, used
// for finding specific items. dataMap is kept in sync with the data slice
dataMap map[string]*Item
// lock is a read/write mutex, and used to facilitate read/write locks on the
// data and dataMap fields
lock sync.RWMutex
}
// queue is the internal data structure used to satisfy heap.Interface. This
// prevents users from calling Pop and Push heap methods directly
type queue []*Item
// Item is something managed in the priority queue
type Item struct {
// Key is a unique string used to identify items in the internal data map
Key string
// Value is an unspecified type that implementations can use to store
// information
Value interface{}
// Priority determines ordering in the queue, with the lowest value being the
// highest priority
Priority int64
// index is an internal value used by the heap package, and should not be
// modified by any consumer of the priority queue
index int
}
// Len returns the count of items in the Priority Queue
func (pq *PriorityQueue) Len() int {
pq.lock.RLock()
defer pq.lock.RUnlock()
return pq.data.Len()
}
// Pop pops the highest priority item from the queue. This is a
// wrapper/convenience method that calls heap.Pop, so consumers do not need to
// invoke heap functions directly
func (pq *PriorityQueue) Pop() (*Item, error) {
pq.lock.Lock()
defer pq.lock.Unlock()
if pq.data.Len() == 0 {
return nil, ErrEmpty
}
item := heap.Pop(&pq.data).(*Item)
delete(pq.dataMap, item.Key)
return item, nil
}
// Push pushes an item on to the queue. This is a wrapper/convenience
// method that calls heap.Push, so consumers do not need to invoke heap
// functions directly. Items must have unique Keys, and Items in the queue
// cannot be updated. To modify an Item, users must first remove it and re-push
// it after modifications
func (pq *PriorityQueue) Push(i *Item) error {
if i == nil || i.Key == "" {
return errors.New("error adding item: Item Key is required")
}
pq.lock.Lock()
defer pq.lock.Unlock()
if _, ok := pq.dataMap[i.Key]; ok {
return ErrDuplicateItem
}
// Copy the item value(s) so that modifications to the source item does not
// affect the item on the queue
clone, err := copystructure.Copy(i)
if err != nil {
return err
}
pq.dataMap[i.Key] = clone.(*Item)
heap.Push(&pq.data, clone)
return nil
}
// PopByKey searches the queue for an item with the given key and removes it
// from the queue if found. Returns nil if not found. This method must fix the
// queue after removing any key.
func (pq *PriorityQueue) PopByKey(key string) (*Item, error) {
pq.lock.Lock()
defer pq.lock.Unlock()
item, ok := pq.dataMap[key]
if !ok {
return nil, nil
}
// Remove the item the heap and delete it from the dataMap
itemRaw := heap.Remove(&pq.data, item.index)
delete(pq.dataMap, key)
if itemRaw != nil {
if i, ok := itemRaw.(*Item); ok {
return i, nil
}
}
return nil, nil
}
// Len returns the number of items in the queue data structure. Do not use this
// method directly on the queue, use PriorityQueue.Len() instead.
func (q queue) Len() int { return len(q) }
// Less returns whether the Item with index i should sort before the Item with
// index j in the queue. This method is used by the queue to determine priority
// internally; the Item with the lower value wins. (priority zero is higher
// priority than 1). The priority of Items with equal values is undetermined.
func (q queue) Less(i, j int) bool {
return q[i].Priority < q[j].Priority
}
// Swap swaps things in-place; part of sort.Interface
func (q queue) Swap(i, j int) {
q[i], q[j] = q[j], q[i]
q[i].index = i
q[j].index = j
}
// Push is used by heap.Interface to push items onto the heap. This method is
// invoked by container/heap, and should not be used directly.
// See: https://golang.org/pkg/container/heap/#Interface
func (q *queue) Push(x interface{}) {
n := len(*q)
item := x.(*Item)
item.index = n
*q = append(*q, item)
}
// Pop is used by heap.Interface to pop items off of the heap. This method is
// invoked by container/heap, and should not be used directly.
// See: https://golang.org/pkg/container/heap/#Interface
func (q *queue) Pop() interface{} {
old := *q
n := len(old)
item := old[n-1]
old[n-1] = nil // avoid memory leak
item.index = -1 // for safety
*q = old[0 : n-1]
return item
}