open-vault/vault/rekey.go

671 lines
18 KiB
Go

package vault
import (
"bytes"
"encoding/hex"
"encoding/json"
"fmt"
"github.com/hashicorp/go-uuid"
"github.com/hashicorp/vault/helper/pgpkeys"
"github.com/hashicorp/vault/physical"
"github.com/hashicorp/vault/shamir"
)
const (
// coreUnsealKeysBackupPath is the path used to back upencrypted unseal
// keys if specified during a rekey operation. This is outside of the
// barrier.
coreBarrierUnsealKeysBackupPath = "core/unseal-keys-backup"
// coreRecoveryUnsealKeysBackupPath is the path used to back upencrypted
// recovery keys if specified during a rekey operation. This is outside of
// the barrier.
coreRecoveryUnsealKeysBackupPath = "core/recovery-keys-backup"
)
// RekeyResult is used to provide the key parts back after
// they are generated as part of the rekey.
type RekeyResult struct {
SecretShares [][]byte
PGPFingerprints []string
Backup bool
RecoveryKey bool
}
// RekeyBackup stores the backup copy of PGP-encrypted keys
type RekeyBackup struct {
Nonce string
Keys map[string][]string
}
func (c *Core) RekeyThreshold(recovery bool) (int, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return 0, ErrSealed
}
if c.standby {
return 0, ErrStandby
}
c.rekeyLock.RLock()
defer c.rekeyLock.RUnlock()
var config *SealConfig
var err error
if recovery {
config, err = c.seal.RecoveryConfig()
} else {
config, err = c.seal.BarrierConfig()
}
if err != nil {
return 0, err
}
return config.SecretThreshold, nil
}
// RekeyProgress is used to return the rekey progress (num shares)
func (c *Core) RekeyProgress(recovery bool) (int, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return 0, ErrSealed
}
if c.standby {
return 0, ErrStandby
}
c.rekeyLock.RLock()
defer c.rekeyLock.RUnlock()
if recovery {
return len(c.recoveryRekeyProgress), nil
}
return len(c.barrierRekeyProgress), nil
}
// RekeyConfig is used to read the rekey configuration
func (c *Core) RekeyConfig(recovery bool) (*SealConfig, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Copy the seal config if any
var conf *SealConfig
if recovery {
if c.recoveryRekeyConfig != nil {
conf = c.recoveryRekeyConfig.Clone()
}
} else {
if c.barrierRekeyConfig != nil {
conf = c.barrierRekeyConfig.Clone()
}
}
return conf, nil
}
func (c *Core) RekeyInit(config *SealConfig, recovery bool) error {
if recovery {
return c.RecoveryRekeyInit(config)
}
return c.BarrierRekeyInit(config)
}
// BarrierRekeyInit is used to initialize the rekey settings for the barrier key
func (c *Core) BarrierRekeyInit(config *SealConfig) error {
// Right now we don't support this, but the rest of the code is ready for
// when we do, hence the check below for this to be false if
// config.StoredShares is greater than zero
if c.seal.StoredKeysSupported() {
return fmt.Errorf("rekeying of barrier not supported when stored key support is available")
}
if config.StoredShares > 0 {
if !c.seal.StoredKeysSupported() {
return fmt.Errorf("storing keys not supported by barrier seal")
}
if len(config.PGPKeys) > 0 {
return fmt.Errorf("PGP key encryption not supported when using stored keys")
}
if config.Backup {
return fmt.Errorf("key backup not supported when using stored keys")
}
}
// Check if the seal configuraiton is valid
if err := config.Validate(); err != nil {
c.logger.Printf("[ERR] core: invalid rekey seal configuration: %v", err)
return fmt.Errorf("invalid rekey seal configuration: %v", err)
}
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Prevent multiple concurrent re-keys
if c.barrierRekeyConfig != nil {
return fmt.Errorf("rekey already in progress")
}
// Copy the configuration
c.barrierRekeyConfig = config.Clone()
// Initialize the nonce
nonce, err := uuid.GenerateUUID()
if err != nil {
c.barrierRekeyConfig = nil
return err
}
c.barrierRekeyConfig.Nonce = nonce
c.logger.Printf("[INFO] core: rekey initialized (nonce: %s, shares: %d, threshold: %d)",
c.barrierRekeyConfig.Nonce, c.barrierRekeyConfig.SecretShares, c.barrierRekeyConfig.SecretThreshold)
return nil
}
// RecoveryRekeyInit is used to initialize the rekey settings for the recovery key
func (c *Core) RecoveryRekeyInit(config *SealConfig) error {
if config.StoredShares > 0 {
return fmt.Errorf("stored shares not supported by recovery key")
}
// Check if the seal configuraiton is valid
if err := config.Validate(); err != nil {
c.logger.Printf("[ERR] core: invalid recovery configuration: %v", err)
return fmt.Errorf("invalid recovery configuration: %v", err)
}
if !c.seal.RecoveryKeySupported() {
return fmt.Errorf("recovery keys not supported")
}
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Prevent multiple concurrent re-keys
if c.recoveryRekeyConfig != nil {
return fmt.Errorf("rekey already in progress")
}
// Copy the configuration
c.recoveryRekeyConfig = config.Clone()
// Initialize the nonce
nonce, err := uuid.GenerateUUID()
if err != nil {
c.recoveryRekeyConfig = nil
return err
}
c.recoveryRekeyConfig.Nonce = nonce
c.logger.Printf("[INFO] core: rekey initialized (nonce: %s, shares: %d, threshold: %d)",
c.recoveryRekeyConfig.Nonce, c.recoveryRekeyConfig.SecretShares, c.recoveryRekeyConfig.SecretThreshold)
return nil
}
func (c *Core) RekeyUpdate(key []byte, nonce string, recovery bool) (*RekeyResult, error) {
if recovery {
return c.RecoveryRekeyUpdate(key, nonce)
}
return c.BarrierRekeyUpdate(key, nonce)
}
// BarrierRekeyUpdate is used to provide a new key part
func (c *Core) BarrierRekeyUpdate(key []byte, nonce string) (*RekeyResult, error) {
// Ensure we are already unsealed
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
// Verify the key length
min, max := c.barrier.KeyLength()
max += shamir.ShareOverhead
if len(key) < min {
return nil, &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)}
}
if len(key) > max {
return nil, &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)}
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Get the seal configuration
existingConfig, err := c.seal.BarrierConfig()
if err != nil {
return nil, err
}
// Ensure the barrier is initialized
if existingConfig == nil {
return nil, ErrNotInit
}
// Ensure a rekey is in progress
if c.barrierRekeyConfig == nil {
return nil, fmt.Errorf("no rekey in progress")
}
if nonce != c.barrierRekeyConfig.Nonce {
return nil, fmt.Errorf("incorrect nonce supplied; nonce for this rekey operation is %s", c.barrierRekeyConfig.Nonce)
}
// Check if we already have this piece
for _, existing := range c.barrierRekeyProgress {
if bytes.Equal(existing, key) {
return nil, nil
}
}
// Store this key
c.barrierRekeyProgress = append(c.barrierRekeyProgress, key)
// Check if we don't have enough keys to unlock
if len(c.barrierRekeyProgress) < existingConfig.SecretThreshold {
c.logger.Printf("[DEBUG] core: cannot rekey, have %d of %d keys",
len(c.barrierRekeyProgress), existingConfig.SecretThreshold)
return nil, nil
}
// Recover the master key
var masterKey []byte
if existingConfig.SecretThreshold == 1 {
masterKey = c.barrierRekeyProgress[0]
c.barrierRekeyProgress = nil
} else {
masterKey, err = shamir.Combine(c.barrierRekeyProgress)
c.barrierRekeyProgress = nil
if err != nil {
return nil, fmt.Errorf("failed to compute master key: %v", err)
}
}
if err := c.barrier.VerifyMaster(masterKey); err != nil {
c.logger.Printf("[ERR] core: rekey aborted, master key verification failed: %v", err)
return nil, err
}
// Generate a new master key
newMasterKey, err := c.barrier.GenerateKey()
if err != nil {
c.logger.Printf("[ERR] core: failed to generate master key: %v", err)
return nil, fmt.Errorf("master key generation failed: %v", err)
}
// Return the master key if only a single key part is used
results := &RekeyResult{
Backup: c.barrierRekeyConfig.Backup,
}
if c.barrierRekeyConfig.SecretShares == 1 {
results.SecretShares = append(results.SecretShares, newMasterKey)
} else {
// Split the master key using the Shamir algorithm
shares, err := shamir.Split(newMasterKey, c.barrierRekeyConfig.SecretShares, c.barrierRekeyConfig.SecretThreshold)
if err != nil {
c.logger.Printf("[ERR] core: failed to generate shares: %v", err)
return nil, fmt.Errorf("failed to generate shares: %v", err)
}
results.SecretShares = shares
}
// If we are storing any shares, add them to the shares to store and remove
// from the returned keys
var keysToStore [][]byte
if c.barrierRekeyConfig.StoredShares > 0 {
for i := 0; i < c.barrierRekeyConfig.StoredShares; i++ {
keysToStore = append(keysToStore, results.SecretShares[0])
results.SecretShares = results.SecretShares[1:]
}
}
if len(c.barrierRekeyConfig.PGPKeys) > 0 {
hexEncodedShares := make([][]byte, len(results.SecretShares))
for i, _ := range results.SecretShares {
hexEncodedShares[i] = []byte(hex.EncodeToString(results.SecretShares[i]))
}
results.PGPFingerprints, results.SecretShares, err = pgpkeys.EncryptShares(hexEncodedShares, c.barrierRekeyConfig.PGPKeys)
if err != nil {
return nil, err
}
if c.barrierRekeyConfig.Backup {
backupInfo := map[string][]string{}
for i := 0; i < len(results.PGPFingerprints); i++ {
encShare := bytes.NewBuffer(results.SecretShares[i])
if backupInfo[results.PGPFingerprints[i]] == nil {
backupInfo[results.PGPFingerprints[i]] = []string{hex.EncodeToString(encShare.Bytes())}
} else {
backupInfo[results.PGPFingerprints[i]] = append(backupInfo[results.PGPFingerprints[i]], hex.EncodeToString(encShare.Bytes()))
}
}
backupVals := &RekeyBackup{
Nonce: c.barrierRekeyConfig.Nonce,
Keys: backupInfo,
}
buf, err := json.Marshal(backupVals)
if err != nil {
c.logger.Printf("[ERR] core: failed to marshal unseal key backup: %v", err)
return nil, fmt.Errorf("failed to marshal unseal key backup: %v", err)
}
pe := &physical.Entry{
Key: coreBarrierUnsealKeysBackupPath,
Value: buf,
}
if err = c.physical.Put(pe); err != nil {
c.logger.Printf("[ERR] core: failed to save unseal key backup: %v", err)
return nil, fmt.Errorf("failed to save unseal key backup: %v", err)
}
}
}
if keysToStore != nil {
if err := c.seal.SetStoredKeys(keysToStore); err != nil {
c.logger.Printf("[ERR] core: failed to store keys: %v", err)
return nil, fmt.Errorf("failed to store keys: %v", err)
}
}
// Rekey the barrier
if err := c.barrier.Rekey(newMasterKey); err != nil {
c.logger.Printf("[ERR] core: failed to rekey barrier: %v", err)
return nil, fmt.Errorf("failed to rekey barrier: %v", err)
}
c.logger.Printf("[INFO] core: security barrier rekeyed (shares: %d, threshold: %d)",
c.barrierRekeyConfig.SecretShares, c.barrierRekeyConfig.SecretThreshold)
if err := c.seal.SetBarrierConfig(c.barrierRekeyConfig); err != nil {
c.logger.Printf("[ERR] core: error saving rekey seal configuration: %v", err)
return nil, fmt.Errorf("failed to save rekey seal configuration: %v", err)
}
// Done!
c.barrierRekeyProgress = nil
c.barrierRekeyConfig = nil
return results, nil
}
// RecoveryRekeyUpdate is used to provide a new key part
func (c *Core) RecoveryRekeyUpdate(key []byte, nonce string) (*RekeyResult, error) {
// Ensure we are already unsealed
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
// Verify the key length
min, max := c.barrier.KeyLength()
max += shamir.ShareOverhead
if len(key) < min {
return nil, &ErrInvalidKey{fmt.Sprintf("key is shorter than minimum %d bytes", min)}
}
if len(key) > max {
return nil, &ErrInvalidKey{fmt.Sprintf("key is longer than maximum %d bytes", max)}
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Get the seal configuration
barrierConfig, err := c.seal.BarrierConfig()
if err != nil {
return nil, err
}
// Ensure the barrier is initialized
if barrierConfig == nil {
return nil, ErrNotInit
}
existingConfig, err := c.seal.RecoveryConfig()
if err != nil {
return nil, err
}
// Ensure a rekey is in progress
if c.recoveryRekeyConfig == nil {
return nil, fmt.Errorf("no rekey in progress")
}
if nonce != c.recoveryRekeyConfig.Nonce {
return nil, fmt.Errorf("incorrect nonce supplied; nonce for this rekey operation is %s", c.recoveryRekeyConfig.Nonce)
}
// Check if we already have this piece
for _, existing := range c.recoveryRekeyProgress {
if bytes.Equal(existing, key) {
return nil, nil
}
}
// Store this key
c.recoveryRekeyProgress = append(c.recoveryRekeyProgress, key)
// Check if we don't have enough keys to unlock
if len(c.recoveryRekeyProgress) < existingConfig.SecretThreshold {
c.logger.Printf("[DEBUG] core: cannot rekey, have %d of %d keys",
len(c.recoveryRekeyProgress), existingConfig.SecretThreshold)
return nil, nil
}
// Recover the master key
var masterKey []byte
if existingConfig.SecretThreshold == 1 {
masterKey = c.recoveryRekeyProgress[0]
c.recoveryRekeyProgress = nil
} else {
masterKey, err = shamir.Combine(c.recoveryRekeyProgress)
c.recoveryRekeyProgress = nil
if err != nil {
return nil, fmt.Errorf("failed to compute recovery key: %v", err)
}
}
// Verify the recovery key
if err := c.seal.VerifyRecoveryKey(masterKey); err != nil {
c.logger.Printf("[ERR] core: rekey aborted, recovery key verification failed: %v", err)
return nil, err
}
// Generate a new master key
newMasterKey, err := c.barrier.GenerateKey()
if err != nil {
c.logger.Printf("[ERR] core: failed to generate recovery key: %v", err)
return nil, fmt.Errorf("recovery key generation failed: %v", err)
}
// Return the master key if only a single key part is used
results := &RekeyResult{
Backup: c.recoveryRekeyConfig.Backup,
}
if c.recoveryRekeyConfig.SecretShares == 1 {
results.SecretShares = append(results.SecretShares, newMasterKey)
} else {
// Split the master key using the Shamir algorithm
shares, err := shamir.Split(newMasterKey, c.recoveryRekeyConfig.SecretShares, c.recoveryRekeyConfig.SecretThreshold)
if err != nil {
c.logger.Printf("[ERR] core: failed to generate shares: %v", err)
return nil, fmt.Errorf("failed to generate shares: %v", err)
}
results.SecretShares = shares
}
if len(c.recoveryRekeyConfig.PGPKeys) > 0 {
hexEncodedShares := make([][]byte, len(results.SecretShares))
for i, _ := range results.SecretShares {
hexEncodedShares[i] = []byte(hex.EncodeToString(results.SecretShares[i]))
}
results.PGPFingerprints, results.SecretShares, err = pgpkeys.EncryptShares(hexEncodedShares, c.recoveryRekeyConfig.PGPKeys)
if err != nil {
return nil, err
}
if c.recoveryRekeyConfig.Backup {
backupInfo := map[string][]string{}
for i := 0; i < len(results.PGPFingerprints); i++ {
encShare := bytes.NewBuffer(results.SecretShares[i])
if backupInfo[results.PGPFingerprints[i]] == nil {
backupInfo[results.PGPFingerprints[i]] = []string{hex.EncodeToString(encShare.Bytes())}
} else {
backupInfo[results.PGPFingerprints[i]] = append(backupInfo[results.PGPFingerprints[i]], hex.EncodeToString(encShare.Bytes()))
}
}
backupVals := &RekeyBackup{
Nonce: c.recoveryRekeyConfig.Nonce,
Keys: backupInfo,
}
buf, err := json.Marshal(backupVals)
if err != nil {
c.logger.Printf("[ERR] core: failed to marshal recovery key backup: %v", err)
return nil, fmt.Errorf("failed to marshal recovery key backup: %v", err)
}
pe := &physical.Entry{
Key: coreRecoveryUnsealKeysBackupPath,
Value: buf,
}
if err = c.physical.Put(pe); err != nil {
c.logger.Printf("[ERR] core: failed to save unseal key backup: %v", err)
return nil, fmt.Errorf("failed to save unseal key backup: %v", err)
}
}
}
if err := c.seal.SetRecoveryKey(newMasterKey); err != nil {
c.logger.Printf("[ERR] core: failed to set recovery key: %v", err)
return nil, fmt.Errorf("failed to set recovery key: %v", err)
}
if err := c.seal.SetRecoveryConfig(c.recoveryRekeyConfig); err != nil {
c.logger.Printf("[ERR] core: error saving rekey seal configuration: %v", err)
return nil, fmt.Errorf("failed to save rekey seal configuration: %v", err)
}
// Done!
c.recoveryRekeyProgress = nil
c.recoveryRekeyConfig = nil
return results, nil
}
// RekeyCancel is used to cancel an inprogress rekey
func (c *Core) RekeyCancel(recovery bool) error {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
// Clear any progress or config
if recovery {
c.recoveryRekeyConfig = nil
c.recoveryRekeyProgress = nil
} else {
c.barrierRekeyConfig = nil
c.barrierRekeyProgress = nil
}
return nil
}
// RekeyRetrieveBackup is used to retrieve any backed-up PGP-encrypted unseal
// keys
func (c *Core) RekeyRetrieveBackup(recovery bool) (*RekeyBackup, error) {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return nil, ErrSealed
}
if c.standby {
return nil, ErrStandby
}
c.rekeyLock.RLock()
defer c.rekeyLock.RUnlock()
var entry *physical.Entry
var err error
if recovery {
entry, err = c.physical.Get(coreRecoveryUnsealKeysBackupPath)
} else {
entry, err = c.physical.Get(coreBarrierUnsealKeysBackupPath)
}
if err != nil {
return nil, err
}
if entry == nil {
return nil, nil
}
ret := &RekeyBackup{}
err = json.Unmarshal(entry.Value, ret)
if err != nil {
return nil, err
}
return ret, nil
}
// RekeyDeleteBackup is used to delete any backed-up PGP-encrypted unseal keys
func (c *Core) RekeyDeleteBackup(recovery bool) error {
c.stateLock.RLock()
defer c.stateLock.RUnlock()
if c.sealed {
return ErrSealed
}
if c.standby {
return ErrStandby
}
c.rekeyLock.Lock()
defer c.rekeyLock.Unlock()
if recovery {
return c.physical.Delete(coreRecoveryUnsealKeysBackupPath)
}
return c.physical.Delete(coreBarrierUnsealKeysBackupPath)
}