open-vault/vault/barrier_aes_gcm.go
2016-05-15 09:58:36 -07:00

803 lines
19 KiB
Go

package vault
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"encoding/json"
"fmt"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/vault/physical"
)
const (
// initialKeyTerm is the hard coded initial key term. This is
// used only for values that are not encrypted with the keyring.
initialKeyTerm = 1
// termSize the number of bytes used for the key term.
termSize = 4
)
// Versions of the AESGCM storage methodology
const (
AESGCMVersion1 = 0x1
AESGCMVersion2 = 0x2
)
// barrierInit is the JSON encoded value stored
type barrierInit struct {
Version int // Version is the current format version
Key []byte // Key is the primary encryption key
}
// AESGCMBarrier is a SecurityBarrier implementation that uses the AES
// cipher core and the Galois Counter Mode block mode. It defaults to
// the golang NONCE default value of 12 and a key size of 256
// bit. AES-GCM is high performance, and provides both confidentiality
// and integrity.
type AESGCMBarrier struct {
backend physical.Backend
l sync.RWMutex
sealed bool
// keyring is used to maintain all of the encryption keys, including
// the active key used for encryption, but also prior keys to allow
// decryption of keys encrypted under previous terms.
keyring *Keyring
// cache is used to reduce the number of AEAD constructions we do
cache map[uint32]cipher.AEAD
cacheLock sync.RWMutex
// currentAESGCMVersionByte is prefixed to a message to allow for
// future versioning of barrier implementations. It's var instead
// of const to allow for testing
currentAESGCMVersionByte byte
}
// NewAESGCMBarrier is used to construct a new barrier that uses
// the provided physical backend for storage.
func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) {
b := &AESGCMBarrier{
backend: physical,
sealed: true,
cache: make(map[uint32]cipher.AEAD),
currentAESGCMVersionByte: byte(AESGCMVersion2),
}
return b, nil
}
// Initialized checks if the barrier has been initialized
// and has a master key set.
func (b *AESGCMBarrier) Initialized() (bool, error) {
// Read the keyring file
out, err := b.backend.Get(keyringPath)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %v", err)
}
if out != nil {
return true, nil
}
// Fallback, check for the old sentinel file
out, err = b.backend.Get(barrierInitPath)
if err != nil {
return false, fmt.Errorf("failed to check for initialization: %v", err)
}
return out != nil, nil
}
// Initialize works only if the barrier has not been initialized
// and makes use of the given master key.
func (b *AESGCMBarrier) Initialize(key []byte) error {
// Verify the key size
min, max := b.KeyLength()
if len(key) < min || len(key) > max {
return fmt.Errorf("Key size must be %d or %d", min, max)
}
// Check if already initialized
if alreadyInit, err := b.Initialized(); err != nil {
return err
} else if alreadyInit {
return ErrBarrierAlreadyInit
}
// Generate encryption key
encrypt, err := b.GenerateKey()
if err != nil {
return fmt.Errorf("failed to generate encryption key: %v", err)
}
// Create a new keyring, install the keys
keyring := NewKeyring()
keyring = keyring.SetMasterKey(key)
keyring, err = keyring.AddKey(&Key{
Term: 1,
Version: 1,
Value: encrypt,
})
if err != nil {
return fmt.Errorf("failed to create keyring: %v", err)
}
return b.persistKeyring(keyring)
}
// persistKeyring is used to write out the keyring using the
// master key to encrypt it.
func (b *AESGCMBarrier) persistKeyring(keyring *Keyring) error {
// Create the keyring entry
buf, err := keyring.Serialize()
if err != nil {
return fmt.Errorf("failed to serialize keyring: %v", err)
}
defer memzero(buf)
// Create the AES-GCM
gcm, err := b.aeadFromKey(keyring.MasterKey())
if err != nil {
return err
}
// Encrypt the barrier init value
value := b.encrypt(keyringPath, initialKeyTerm, gcm, buf)
// Create the keyring physical entry
pe := &physical.Entry{
Key: keyringPath,
Value: value,
}
if err := b.backend.Put(pe); err != nil {
return fmt.Errorf("failed to persist keyring: %v", err)
}
// Serialize the master key value
key := &Key{
Term: 1,
Version: 1,
Value: keyring.MasterKey(),
}
buf, err = key.Serialize()
if err != nil {
return fmt.Errorf("failed to serialize master key: %v", err)
}
defer memzero(buf)
// Encrypt the master key
activeKey := keyring.ActiveKey()
aead, err := b.aeadFromKey(activeKey.Value)
if err != nil {
return err
}
value = b.encrypt(masterKeyPath, activeKey.Term, aead, buf)
// Update the masterKeyPath for standby instances
pe = &physical.Entry{
Key: masterKeyPath,
Value: value,
}
if err := b.backend.Put(pe); err != nil {
return fmt.Errorf("failed to persist master key: %v", err)
}
return nil
}
// GenerateKey is used to generate a new key
func (b *AESGCMBarrier) GenerateKey() ([]byte, error) {
// Generate a 256bit key
buf := make([]byte, 2*aes.BlockSize)
_, err := rand.Read(buf)
return buf, err
}
// KeyLength is used to sanity check a key
func (b *AESGCMBarrier) KeyLength() (int, int) {
return aes.BlockSize, 2 * aes.BlockSize
}
// Sealed checks if the barrier has been unlocked yet. The Barrier
// is not expected to be able to perform any CRUD until it is unsealed.
func (b *AESGCMBarrier) Sealed() (bool, error) {
b.l.RLock()
defer b.l.RUnlock()
return b.sealed, nil
}
// VerifyMaster is used to check if the given key matches the master key
func (b *AESGCMBarrier) VerifyMaster(key []byte) error {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
if subtle.ConstantTimeCompare(key, b.keyring.MasterKey()) != 1 {
return ErrBarrierInvalidKey
}
return nil
}
// ReloadKeyring is used to re-read the underlying keyring.
// This is used for HA deployments to ensure the latest keyring
// is present in the leader.
func (b *AESGCMBarrier) ReloadKeyring() error {
b.l.Lock()
defer b.l.Unlock()
// Create the AES-GCM
gcm, err := b.aeadFromKey(b.keyring.MasterKey())
if err != nil {
return err
}
// Read in the keyring
out, err := b.backend.Get(keyringPath)
if err != nil {
return fmt.Errorf("failed to check for keyring: %v", err)
}
// Ensure that the keyring exists. This should never happen,
// and indicates something really bad has happened.
if out == nil {
return fmt.Errorf("keyring unexpectedly missing")
}
// Decrypt the barrier init key
plain, err := b.decrypt(keyringPath, gcm, out.Value)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
defer memzero(plain)
// Recover the keyring
keyring, err := DeserializeKeyring(plain)
if err != nil {
return fmt.Errorf("keyring deserialization failed: %v", err)
}
// Setup the keyring and finish
b.keyring = keyring
return nil
}
// ReloadMasterKey is used to re-read the underlying masterkey.
// This is used for HA deployments to ensure the latest master key
// is available for keyring reloading.
func (b *AESGCMBarrier) ReloadMasterKey() error {
// Read the masterKeyPath upgrade
out, err := b.Get(masterKeyPath)
if err != nil {
return fmt.Errorf("failed to read master key path: %v", err)
}
// The masterKeyPath could be missing (backwards incompatible),
// we can ignore this and attempt to make progress with the current
// master key.
if out == nil {
return nil
}
// Deserialize the master key
key, err := DeserializeKey(out.Value)
if err != nil {
return fmt.Errorf("failed to deserialize key: %v", err)
}
b.l.Lock()
defer b.l.Unlock()
// Check if the master key is the same
if bytes.Equal(b.keyring.MasterKey(), key.Value) {
return nil
}
// Update the master key
b.keyring = b.keyring.SetMasterKey(key.Value)
return nil
}
// Unseal is used to provide the master key which permits the barrier
// to be unsealed. If the key is not correct, the barrier remains sealed.
func (b *AESGCMBarrier) Unseal(key []byte) error {
b.l.Lock()
defer b.l.Unlock()
// Do nothing if already unsealed
if !b.sealed {
return nil
}
// Create the AES-GCM
gcm, err := b.aeadFromKey(key)
if err != nil {
return err
}
// Read in the keyring
out, err := b.backend.Get(keyringPath)
if err != nil {
return fmt.Errorf("failed to check for keyring: %v", err)
}
if out != nil {
// Decrypt the barrier init key
plain, err := b.decrypt(keyringPath, gcm, out.Value)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
defer memzero(plain)
// Recover the keyring
keyring, err := DeserializeKeyring(plain)
if err != nil {
return fmt.Errorf("keyring deserialization failed: %v", err)
}
// Setup the keyring and finish
b.keyring = keyring
b.sealed = false
return nil
}
// Read the barrier initialization key
out, err = b.backend.Get(barrierInitPath)
if err != nil {
return fmt.Errorf("failed to check for initialization: %v", err)
}
if out == nil {
return ErrBarrierNotInit
}
// Decrypt the barrier init key
plain, err := b.decrypt(barrierInitPath, gcm, out.Value)
if err != nil {
if strings.Contains(err.Error(), "message authentication failed") {
return ErrBarrierInvalidKey
}
return err
}
defer memzero(plain)
// Unmarshal the barrier init
var init barrierInit
if err := json.Unmarshal(plain, &init); err != nil {
return fmt.Errorf("failed to unmarshal barrier init file")
}
// Setup a new keyring, this is for backwards compatibility
keyring := NewKeyring()
keyring = keyring.SetMasterKey(key)
keyring, err = keyring.AddKey(&Key{
Term: 1,
Version: 1,
Value: init.Key,
})
if err != nil {
return fmt.Errorf("failed to create keyring: %v", err)
}
if err := b.persistKeyring(keyring); err != nil {
return err
}
// Delete the old barrier entry
if err := b.backend.Delete(barrierInitPath); err != nil {
return fmt.Errorf("failed to delete barrier init file: %v", err)
}
// Set the vault as unsealed
b.keyring = keyring
b.sealed = false
return nil
}
// Seal is used to re-seal the barrier. This requires the barrier to
// be unsealed again to perform any further operations.
func (b *AESGCMBarrier) Seal() error {
b.l.Lock()
defer b.l.Unlock()
// Remove the primary key, and seal the vault
b.cache = make(map[uint32]cipher.AEAD)
b.keyring = nil
b.sealed = true
return nil
}
// Rotate is used to create a new encryption key. All future writes
// should use the new key, while old values should still be decryptable.
func (b *AESGCMBarrier) Rotate() (uint32, error) {
b.l.Lock()
defer b.l.Unlock()
if b.sealed {
return 0, ErrBarrierSealed
}
// Generate a new key
encrypt, err := b.GenerateKey()
if err != nil {
return 0, fmt.Errorf("failed to generate encryption key: %v", err)
}
// Get the next term
term := b.keyring.ActiveTerm()
newTerm := term + 1
// Add a new encryption key
newKeyring, err := b.keyring.AddKey(&Key{
Term: newTerm,
Version: 1,
Value: encrypt,
})
if err != nil {
return 0, fmt.Errorf("failed to add new encryption key: %v", err)
}
// Persist the new keyring
if err := b.persistKeyring(newKeyring); err != nil {
return 0, err
}
// Swap the keyrings
b.keyring = newKeyring
return newTerm, nil
}
// CreateUpgrade creates an upgrade path key to the given term from the previous term
func (b *AESGCMBarrier) CreateUpgrade(term uint32) error {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
// Get the key for this term
termKey := b.keyring.TermKey(term)
buf, err := termKey.Serialize()
if err != nil {
return err
}
// Get the AEAD for the previous term
prevTerm := term - 1
primary, err := b.aeadForTerm(prevTerm)
if err != nil {
return err
}
key := fmt.Sprintf("%s%d", keyringUpgradePrefix, prevTerm)
value := b.encrypt(key, prevTerm, primary, buf)
// Create upgrade key
pe := &physical.Entry{
Key: key,
Value: value,
}
return b.backend.Put(pe)
}
// DestroyUpgrade destroys the upgrade path key to the given term
func (b *AESGCMBarrier) DestroyUpgrade(term uint32) error {
path := fmt.Sprintf("%s%d", keyringUpgradePrefix, term-1)
return b.Delete(path)
}
// CheckUpgrade looks for an upgrade to the current term and installs it
func (b *AESGCMBarrier) CheckUpgrade() (bool, uint32, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return false, 0, ErrBarrierSealed
}
// Get the current term
activeTerm := b.keyring.ActiveTerm()
// Check for an upgrade key
upgrade := fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm)
entry, err := b.Get(upgrade)
if err != nil {
return false, 0, err
}
// Nothing to do if no upgrade
if entry == nil {
return false, 0, nil
}
// Deserialize the key
key, err := DeserializeKey(entry.Value)
if err != nil {
return false, 0, err
}
// Upgrade from read lock to write lock
b.l.RUnlock()
defer b.l.RLock()
b.l.Lock()
defer b.l.Unlock()
// Update the keyring
newKeyring, err := b.keyring.AddKey(key)
if err != nil {
return false, 0, fmt.Errorf("failed to add new encryption key: %v", err)
}
b.keyring = newKeyring
// Done!
return true, key.Term, nil
}
// ActiveKeyInfo is used to inform details about the active key
func (b *AESGCMBarrier) ActiveKeyInfo() (*KeyInfo, error) {
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
// Determine the key install time
term := b.keyring.ActiveTerm()
key := b.keyring.TermKey(term)
// Return the key info
info := &KeyInfo{
Term: int(term),
InstallTime: key.InstallTime,
}
return info, nil
}
// Rekey is used to change the master key used to protect the keyring
func (b *AESGCMBarrier) Rekey(key []byte) error {
b.l.Lock()
defer b.l.Unlock()
if b.sealed {
return ErrBarrierSealed
}
// Verify the key size
min, max := b.KeyLength()
if len(key) < min || len(key) > max {
return fmt.Errorf("Key size must be %d or %d", min, max)
}
// Add a new encryption key
newKeyring := b.keyring.SetMasterKey(key)
// Persist the new keyring
if err := b.persistKeyring(newKeyring); err != nil {
return err
}
// Swap the keyrings
b.keyring = newKeyring
return nil
}
// Put is used to insert or update an entry
func (b *AESGCMBarrier) Put(entry *Entry) error {
defer metrics.MeasureSince([]string{"barrier", "put"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
term := b.keyring.ActiveTerm()
primary, err := b.aeadForTerm(term)
if err != nil {
return err
}
pe := &physical.Entry{
Key: entry.Key,
Value: b.encrypt(entry.Key, term, primary, entry.Value),
}
return b.backend.Put(pe)
}
// Get is used to fetch an entry
func (b *AESGCMBarrier) Get(key string) (*Entry, error) {
defer metrics.MeasureSince([]string{"barrier", "get"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
// Read the key from the backend
pe, err := b.backend.Get(key)
if err != nil {
return nil, err
} else if pe == nil {
return nil, nil
}
// Decrypt the ciphertext
plain, err := b.decryptKeyring(key, pe.Value)
if err != nil {
return nil, fmt.Errorf("decryption failed: %v", err)
}
// Wrap in a logical entry
entry := &Entry{
Key: key,
Value: plain,
}
return entry, nil
}
// Delete is used to permanently delete an entry
func (b *AESGCMBarrier) Delete(key string) error {
defer metrics.MeasureSince([]string{"barrier", "delete"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return ErrBarrierSealed
}
return b.backend.Delete(key)
}
// List is used ot list all the keys under a given
// prefix, up to the next prefix.
func (b *AESGCMBarrier) List(prefix string) ([]string, error) {
defer metrics.MeasureSince([]string{"barrier", "list"}, time.Now())
b.l.RLock()
defer b.l.RUnlock()
if b.sealed {
return nil, ErrBarrierSealed
}
return b.backend.List(prefix)
}
// aeadForTerm returns the AES-GCM AEAD for the given term
func (b *AESGCMBarrier) aeadForTerm(term uint32) (cipher.AEAD, error) {
// Check for the keyring
keyring := b.keyring
if keyring == nil {
return nil, nil
}
// Check the cache for the aead
b.cacheLock.RLock()
aead, ok := b.cache[term]
b.cacheLock.RUnlock()
if ok {
return aead, nil
}
// Read the underlying key
key := keyring.TermKey(term)
if key == nil {
return nil, nil
}
// Create a new aead
aead, err := b.aeadFromKey(key.Value)
if err != nil {
return nil, err
}
// Update the cache
b.cacheLock.Lock()
b.cache[term] = aead
b.cacheLock.Unlock()
return aead, nil
}
// aeadFromKey returns an AES-GCM AEAD using the given key.
func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) {
// Create the AES cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return nil, fmt.Errorf("failed to create cipher: %v", err)
}
// Create the GCM mode AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return nil, fmt.Errorf("failed to initialize GCM mode")
}
return gcm, nil
}
// encrypt is used to encrypt a value
func (b *AESGCMBarrier) encrypt(path string, term uint32, gcm cipher.AEAD, plain []byte) []byte {
// Allocate the output buffer with room for tern, version byte,
// nonce, GCM tag and the plaintext
capacity := termSize + 1 + gcm.NonceSize() + gcm.Overhead() + len(plain)
size := termSize + 1 + gcm.NonceSize()
out := make([]byte, size, capacity)
// Set the key term
binary.BigEndian.PutUint32(out[:4], term)
// Set the version byte
out[4] = b.currentAESGCMVersionByte
// Generate a random nonce
nonce := out[5 : 5+gcm.NonceSize()]
rand.Read(nonce)
// Seal the output
switch b.currentAESGCMVersionByte {
case AESGCMVersion1:
out = gcm.Seal(out, nonce, plain, nil)
case AESGCMVersion2:
out = gcm.Seal(out, nonce, plain, []byte(path))
default:
panic("Unknown AESGCM version")
}
return out
}
// decrypt is used to decrypt a value
func (b *AESGCMBarrier) decrypt(path string, gcm cipher.AEAD, cipher []byte) ([]byte, error) {
// Verify the term is always just one
term := binary.BigEndian.Uint32(cipher[:4])
if term != initialKeyTerm {
return nil, fmt.Errorf("term mis-match")
}
// Capture the parts
nonce := cipher[5 : 5+gcm.NonceSize()]
raw := cipher[5+gcm.NonceSize():]
out := make([]byte, 0, len(raw)-gcm.NonceSize())
// Verify the cipher byte and attempt to open
switch cipher[4] {
case AESGCMVersion1:
return gcm.Open(out, nonce, raw, nil)
case AESGCMVersion2:
return gcm.Open(out, nonce, raw, []byte(path))
default:
return nil, fmt.Errorf("version bytes mis-match")
}
}
// decryptKeyring is used to decrypt a value using the keyring
func (b *AESGCMBarrier) decryptKeyring(path string, cipher []byte) ([]byte, error) {
// Verify the term
term := binary.BigEndian.Uint32(cipher[:4])
// Get the GCM by term
// It is expensive to do this first but it is not a
// normal case that this won't match
gcm, err := b.aeadForTerm(term)
if err != nil {
return nil, err
}
if gcm == nil {
return nil, fmt.Errorf("no decryption key available for term %d", term)
}
nonce := cipher[5 : 5+gcm.NonceSize()]
raw := cipher[5+gcm.NonceSize():]
out := make([]byte, 0, len(raw)-gcm.NonceSize())
// Attempt to open
switch cipher[4] {
case AESGCMVersion1:
return gcm.Open(out, nonce, raw, nil)
case AESGCMVersion2:
return gcm.Open(out, nonce, raw, []byte(path))
default:
return nil, fmt.Errorf("version bytes mis-match")
}
}