package vault import ( "context" "crypto/aes" "crypto/cipher" "crypto/rand" "crypto/subtle" "encoding/binary" "errors" "fmt" "io" "strconv" "strings" "sync" "time" "github.com/armon/go-metrics" "github.com/hashicorp/go-secure-stdlib/strutil" "github.com/hashicorp/vault/sdk/helper/jsonutil" "github.com/hashicorp/vault/sdk/logical" "github.com/hashicorp/vault/sdk/physical" "go.uber.org/atomic" ) const ( // initialKeyTerm is the hard coded initial key term. This is // used only for values that are not encrypted with the keyring. initialKeyTerm = 1 // termSize the number of bytes used for the key term. termSize = 4 autoRotateCheckInterval = 5 * time.Minute legacyRotateReason = "legacy rotation" ) // Versions of the AESGCM storage methodology const ( AESGCMVersion1 = 0x1 AESGCMVersion2 = 0x2 ) // barrierInit is the JSON encoded value stored type barrierInit struct { Version int // Version is the current format version Key []byte // Key is the primary encryption key } // Validate AESGCMBarrier satisfies SecurityBarrier interface var ( _ SecurityBarrier = &AESGCMBarrier{} barrierEncryptsMetric = []string{"barrier", "estimated_encryptions"} barrierRotationsMetric = []string{"barrier", "auto_rotation"} ) // AESGCMBarrier is a SecurityBarrier implementation that uses the AES // cipher core and the Galois Counter Mode block mode. It defaults to // the golang NONCE default value of 12 and a key size of 256 // bit. AES-GCM is high performance, and provides both confidentiality // and integrity. type AESGCMBarrier struct { backend physical.Backend l sync.RWMutex sealed bool // keyring is used to maintain all of the encryption keys, including // the active key used for encryption, but also prior keys to allow // decryption of keys encrypted under previous terms. keyring *Keyring // cache is used to reduce the number of AEAD constructions we do cache map[uint32]cipher.AEAD cacheLock sync.RWMutex // currentAESGCMVersionByte is prefixed to a message to allow for // future versioning of barrier implementations. It's var instead // of const to allow for testing currentAESGCMVersionByte byte initialized atomic.Bool UnaccountedEncryptions *atomic.Int64 // Used only for testing RemoteEncryptions *atomic.Int64 totalLocalEncryptions *atomic.Int64 } func (b *AESGCMBarrier) RotationConfig() (kc KeyRotationConfig, err error) { if b.keyring == nil { return kc, errors.New("keyring not yet present") } return b.keyring.rotationConfig.Clone(), nil } func (b *AESGCMBarrier) SetRotationConfig(ctx context.Context, rotConfig KeyRotationConfig) error { b.l.Lock() defer b.l.Unlock() rotConfig.Sanitize() if !rotConfig.Equals(b.keyring.rotationConfig) { b.keyring.rotationConfig = rotConfig return b.persistKeyring(ctx, b.keyring) } return nil } // NewAESGCMBarrier is used to construct a new barrier that uses // the provided physical backend for storage. func NewAESGCMBarrier(physical physical.Backend) (*AESGCMBarrier, error) { b := &AESGCMBarrier{ backend: physical, sealed: true, cache: make(map[uint32]cipher.AEAD), currentAESGCMVersionByte: byte(AESGCMVersion2), UnaccountedEncryptions: atomic.NewInt64(0), RemoteEncryptions: atomic.NewInt64(0), totalLocalEncryptions: atomic.NewInt64(0), } return b, nil } // Initialized checks if the barrier has been initialized // and has a master key set. func (b *AESGCMBarrier) Initialized(ctx context.Context) (bool, error) { if b.initialized.Load() { return true, nil } // Read the keyring file keys, err := b.backend.List(ctx, keyringPrefix) if err != nil { return false, fmt.Errorf("failed to check for initialization: %w", err) } if strutil.StrListContains(keys, "keyring") { b.initialized.Store(true) return true, nil } // Fallback, check for the old sentinel file out, err := b.backend.Get(ctx, barrierInitPath) if err != nil { return false, fmt.Errorf("failed to check for initialization: %w", err) } b.initialized.Store(out != nil) return out != nil, nil } // Initialize works only if the barrier has not been initialized // and makes use of the given master key. func (b *AESGCMBarrier) Initialize(ctx context.Context, key, sealKey []byte, reader io.Reader) error { // Verify the key size min, max := b.KeyLength() if len(key) < min || len(key) > max { return fmt.Errorf("key size must be %d or %d", min, max) } // Check if already initialized if alreadyInit, err := b.Initialized(ctx); err != nil { return err } else if alreadyInit { return ErrBarrierAlreadyInit } // Generate encryption key encrypt, err := b.GenerateKey(reader) if err != nil { return fmt.Errorf("failed to generate encryption key: %w", err) } // Create a new keyring, install the keys keyring := NewKeyring() keyring = keyring.SetMasterKey(key) keyring, err = keyring.AddKey(&Key{ Term: 1, Version: 1, Value: encrypt, }) if err != nil { return fmt.Errorf("failed to create keyring: %w", err) } err = b.persistKeyring(ctx, keyring) if err != nil { return err } if len(sealKey) > 0 { primary, err := b.aeadFromKey(encrypt) if err != nil { return err } err = b.putInternal(ctx, 1, primary, &logical.StorageEntry{ Key: shamirKekPath, Value: sealKey, }) if err != nil { return fmt.Errorf("failed to store new seal key: %w", err) } } return nil } // persistKeyring is used to write out the keyring using the // master key to encrypt it. func (b *AESGCMBarrier) persistKeyring(ctx context.Context, keyring *Keyring) error { // Create the keyring entry keyringBuf, err := keyring.Serialize() defer memzero(keyringBuf) if err != nil { return fmt.Errorf("failed to serialize keyring: %w", err) } // Create the AES-GCM gcm, err := b.aeadFromKey(keyring.MasterKey()) if err != nil { return err } // Encrypt the barrier init value value, err := b.encrypt(keyringPath, initialKeyTerm, gcm, keyringBuf) if err != nil { return err } // Create the keyring physical entry pe := &physical.Entry{ Key: keyringPath, Value: value, } if err := b.backend.Put(ctx, pe); err != nil { return fmt.Errorf("failed to persist keyring: %w", err) } // Serialize the master key value key := &Key{ Term: 1, Version: 1, Value: keyring.MasterKey(), } keyBuf, err := key.Serialize() defer memzero(keyBuf) if err != nil { return fmt.Errorf("failed to serialize master key: %w", err) } // Encrypt the master key activeKey := keyring.ActiveKey() aead, err := b.aeadFromKey(activeKey.Value) if err != nil { return err } value, err = b.encryptTracked(masterKeyPath, activeKey.Term, aead, keyBuf) if err != nil { return err } // Update the masterKeyPath for standby instances pe = &physical.Entry{ Key: masterKeyPath, Value: value, } if err := b.backend.Put(ctx, pe); err != nil { return fmt.Errorf("failed to persist master key: %w", err) } return nil } // GenerateKey is used to generate a new key func (b *AESGCMBarrier) GenerateKey(reader io.Reader) ([]byte, error) { // Generate a 256bit key buf := make([]byte, 2*aes.BlockSize) _, err := reader.Read(buf) return buf, err } // KeyLength is used to sanity check a key func (b *AESGCMBarrier) KeyLength() (int, int) { return aes.BlockSize, 2 * aes.BlockSize } // Sealed checks if the barrier has been unlocked yet. The Barrier // is not expected to be able to perform any CRUD until it is unsealed. func (b *AESGCMBarrier) Sealed() (bool, error) { b.l.RLock() sealed := b.sealed b.l.RUnlock() return sealed, nil } // VerifyMaster is used to check if the given key matches the master key func (b *AESGCMBarrier) VerifyMaster(key []byte) error { b.l.RLock() defer b.l.RUnlock() if b.sealed { return ErrBarrierSealed } if subtle.ConstantTimeCompare(key, b.keyring.MasterKey()) != 1 { return ErrBarrierInvalidKey } return nil } // ReloadKeyring is used to re-read the underlying keyring. // This is used for HA deployments to ensure the latest keyring // is present in the leader. func (b *AESGCMBarrier) ReloadKeyring(ctx context.Context) error { b.l.Lock() defer b.l.Unlock() // Create the AES-GCM gcm, err := b.aeadFromKey(b.keyring.MasterKey()) if err != nil { return err } // Read in the keyring out, err := b.backend.Get(ctx, keyringPath) if err != nil { return fmt.Errorf("failed to check for keyring: %w", err) } // Ensure that the keyring exists. This should never happen, // and indicates something really bad has happened. if out == nil { return errors.New("keyring unexpectedly missing") } // Verify the term is always just one term := binary.BigEndian.Uint32(out.Value[:4]) if term != initialKeyTerm { return errors.New("term mis-match") } // Decrypt the barrier init key plain, err := b.decrypt(keyringPath, gcm, out.Value) defer memzero(plain) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } // Reset enc. counters, this may be a leadership change b.totalLocalEncryptions.Store(0) b.totalLocalEncryptions.Store(0) b.UnaccountedEncryptions.Store(0) b.RemoteEncryptions.Store(0) return b.recoverKeyring(plain) } func (b *AESGCMBarrier) recoverKeyring(plaintext []byte) error { keyring, err := DeserializeKeyring(plaintext) if err != nil { return fmt.Errorf("keyring deserialization failed: %w", err) } // Setup the keyring and finish b.cache = make(map[uint32]cipher.AEAD) b.keyring = keyring return nil } // ReloadMasterKey is used to re-read the underlying masterkey. // This is used for HA deployments to ensure the latest master key // is available for keyring reloading. func (b *AESGCMBarrier) ReloadMasterKey(ctx context.Context) error { // Read the masterKeyPath upgrade out, err := b.Get(ctx, masterKeyPath) if err != nil { return fmt.Errorf("failed to read master key path: %w", err) } // The masterKeyPath could be missing (backwards incompatible), // we can ignore this and attempt to make progress with the current // master key. if out == nil { return nil } // Grab write lock and refetch b.l.Lock() defer b.l.Unlock() out, err = b.lockSwitchedGet(ctx, masterKeyPath, false) if err != nil { return fmt.Errorf("failed to read master key path: %w", err) } if out == nil { return nil } // Deserialize the master key key, err := DeserializeKey(out.Value) memzero(out.Value) if err != nil { return fmt.Errorf("failed to deserialize key: %w", err) } // Check if the master key is the same if subtle.ConstantTimeCompare(b.keyring.MasterKey(), key.Value) == 1 { return nil } // Update the master key oldKeyring := b.keyring b.keyring = b.keyring.SetMasterKey(key.Value) oldKeyring.Zeroize(false) return nil } // Unseal is used to provide the master key which permits the barrier // to be unsealed. If the key is not correct, the barrier remains sealed. func (b *AESGCMBarrier) Unseal(ctx context.Context, key []byte) error { b.l.Lock() defer b.l.Unlock() // Do nothing if already unsealed if !b.sealed { return nil } // Create the AES-GCM gcm, err := b.aeadFromKey(key) if err != nil { return err } // Read in the keyring out, err := b.backend.Get(ctx, keyringPath) if err != nil { return fmt.Errorf("failed to check for keyring: %w", err) } if out != nil { // Verify the term is always just one term := binary.BigEndian.Uint32(out.Value[:4]) if term != initialKeyTerm { return errors.New("term mis-match") } // Decrypt the barrier init key plain, err := b.decrypt(keyringPath, gcm, out.Value) defer memzero(plain) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } // Recover the keyring err = b.recoverKeyring(plain) if err != nil { return fmt.Errorf("keyring deserialization failed: %w", err) } b.sealed = false return nil } // Read the barrier initialization key out, err = b.backend.Get(ctx, barrierInitPath) if err != nil { return fmt.Errorf("failed to check for initialization: %w", err) } if out == nil { return ErrBarrierNotInit } // Verify the term is always just one term := binary.BigEndian.Uint32(out.Value[:4]) if term != initialKeyTerm { return errors.New("term mis-match") } // Decrypt the barrier init key plain, err := b.decrypt(barrierInitPath, gcm, out.Value) if err != nil { if strings.Contains(err.Error(), "message authentication failed") { return ErrBarrierInvalidKey } return err } defer memzero(plain) // Unmarshal the barrier init var init barrierInit if err := jsonutil.DecodeJSON(plain, &init); err != nil { return fmt.Errorf("failed to unmarshal barrier init file") } // Setup a new keyring, this is for backwards compatibility keyringNew := NewKeyring() keyring := keyringNew.SetMasterKey(key) // AddKey reuses the master, so we are only zeroizing after this call defer keyringNew.Zeroize(false) keyring, err = keyring.AddKey(&Key{ Term: 1, Version: 1, Value: init.Key, }) if err != nil { return fmt.Errorf("failed to create keyring: %w", err) } if err := b.persistKeyring(ctx, keyring); err != nil { return err } // Delete the old barrier entry if err := b.backend.Delete(ctx, barrierInitPath); err != nil { return fmt.Errorf("failed to delete barrier init file: %w", err) } // Set the vault as unsealed b.keyring = keyring b.sealed = false return nil } // Seal is used to re-seal the barrier. This requires the barrier to // be unsealed again to perform any further operations. func (b *AESGCMBarrier) Seal() error { b.l.Lock() defer b.l.Unlock() // Remove the primary key, and seal the vault b.cache = make(map[uint32]cipher.AEAD) b.keyring.Zeroize(true) b.keyring = nil b.sealed = true return nil } // Rotate is used to create a new encryption key. All future writes // should use the new key, while old values should still be decryptable. func (b *AESGCMBarrier) Rotate(ctx context.Context, randomSource io.Reader) (uint32, error) { b.l.Lock() defer b.l.Unlock() if b.sealed { return 0, ErrBarrierSealed } // Generate a new key encrypt, err := b.GenerateKey(randomSource) if err != nil { return 0, fmt.Errorf("failed to generate encryption key: %w", err) } // Get the next term term := b.keyring.ActiveTerm() newTerm := term + 1 // Add a new encryption key newKeyring, err := b.keyring.AddKey(&Key{ Term: newTerm, Version: 1, Value: encrypt, }) if err != nil { return 0, fmt.Errorf("failed to add new encryption key: %w", err) } // Persist the new keyring if err := b.persistKeyring(ctx, newKeyring); err != nil { return 0, err } // Clear encryption tracking b.RemoteEncryptions.Store(0) b.totalLocalEncryptions.Store(0) b.UnaccountedEncryptions.Store(0) // Swap the keyrings b.keyring = newKeyring return newTerm, nil } // CreateUpgrade creates an upgrade path key to the given term from the previous term func (b *AESGCMBarrier) CreateUpgrade(ctx context.Context, term uint32) error { b.l.RLock() if b.sealed { b.l.RUnlock() return ErrBarrierSealed } // Get the key for this term termKey := b.keyring.TermKey(term) buf, err := termKey.Serialize() defer memzero(buf) if err != nil { b.l.RUnlock() return err } // Get the AEAD for the previous term prevTerm := term - 1 primary, err := b.aeadForTerm(prevTerm) if err != nil { b.l.RUnlock() return err } key := fmt.Sprintf("%s%d", keyringUpgradePrefix, prevTerm) value, err := b.encryptTracked(key, prevTerm, primary, buf) b.l.RUnlock() if err != nil { return err } // Create upgrade key pe := &physical.Entry{ Key: key, Value: value, } return b.backend.Put(ctx, pe) } // DestroyUpgrade destroys the upgrade path key to the given term func (b *AESGCMBarrier) DestroyUpgrade(ctx context.Context, term uint32) error { path := fmt.Sprintf("%s%d", keyringUpgradePrefix, term-1) return b.Delete(ctx, path) } // CheckUpgrade looks for an upgrade to the current term and installs it func (b *AESGCMBarrier) CheckUpgrade(ctx context.Context) (bool, uint32, error) { b.l.RLock() if b.sealed { b.l.RUnlock() return false, 0, ErrBarrierSealed } // Get the current term activeTerm := b.keyring.ActiveTerm() // Check for an upgrade key upgrade := fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm) entry, err := b.lockSwitchedGet(ctx, upgrade, false) if err != nil { b.l.RUnlock() return false, 0, err } // Nothing to do if no upgrade if entry == nil { b.l.RUnlock() return false, 0, nil } // Upgrade from read lock to write lock b.l.RUnlock() b.l.Lock() defer b.l.Unlock() // Validate base cases and refetch values again if b.sealed { return false, 0, ErrBarrierSealed } activeTerm = b.keyring.ActiveTerm() upgrade = fmt.Sprintf("%s%d", keyringUpgradePrefix, activeTerm) entry, err = b.lockSwitchedGet(ctx, upgrade, false) if err != nil { return false, 0, err } if entry == nil { return false, 0, nil } // Deserialize the key key, err := DeserializeKey(entry.Value) memzero(entry.Value) if err != nil { return false, 0, err } // Update the keyring newKeyring, err := b.keyring.AddKey(key) if err != nil { return false, 0, fmt.Errorf("failed to add new encryption key: %w", err) } b.keyring = newKeyring // Done! return true, key.Term, nil } // ActiveKeyInfo is used to inform details about the active key func (b *AESGCMBarrier) ActiveKeyInfo() (*KeyInfo, error) { b.l.RLock() defer b.l.RUnlock() if b.sealed { return nil, ErrBarrierSealed } // Determine the key install time term := b.keyring.ActiveTerm() key := b.keyring.TermKey(term) // Return the key info info := &KeyInfo{ Term: int(term), InstallTime: key.InstallTime, Encryptions: b.encryptions(), } return info, nil } // Rekey is used to change the master key used to protect the keyring func (b *AESGCMBarrier) Rekey(ctx context.Context, key []byte) error { b.l.Lock() defer b.l.Unlock() newKeyring, err := b.updateMasterKeyCommon(key) if err != nil { return err } // Persist the new keyring if err := b.persistKeyring(ctx, newKeyring); err != nil { return err } // Swap the keyrings oldKeyring := b.keyring b.keyring = newKeyring oldKeyring.Zeroize(false) return nil } // SetMasterKey updates the keyring's in-memory master key but does not persist // anything to storage func (b *AESGCMBarrier) SetMasterKey(key []byte) error { b.l.Lock() defer b.l.Unlock() newKeyring, err := b.updateMasterKeyCommon(key) if err != nil { return err } // Swap the keyrings oldKeyring := b.keyring b.keyring = newKeyring oldKeyring.Zeroize(false) return nil } // Performs common tasks related to updating the master key; note that the lock // must be held before calling this function func (b *AESGCMBarrier) updateMasterKeyCommon(key []byte) (*Keyring, error) { if b.sealed { return nil, ErrBarrierSealed } // Verify the key size min, max := b.KeyLength() if len(key) < min || len(key) > max { return nil, fmt.Errorf("key size must be %d or %d", min, max) } return b.keyring.SetMasterKey(key), nil } // Put is used to insert or update an entry func (b *AESGCMBarrier) Put(ctx context.Context, entry *logical.StorageEntry) error { defer metrics.MeasureSince([]string{"barrier", "put"}, time.Now()) b.l.RLock() if b.sealed { b.l.RUnlock() return ErrBarrierSealed } term := b.keyring.ActiveTerm() primary, err := b.aeadForTerm(term) b.l.RUnlock() if err != nil { return err } return b.putInternal(ctx, term, primary, entry) } func (b *AESGCMBarrier) putInternal(ctx context.Context, term uint32, primary cipher.AEAD, entry *logical.StorageEntry) error { value, err := b.encryptTracked(entry.Key, term, primary, entry.Value) if err != nil { return err } pe := &physical.Entry{ Key: entry.Key, Value: value, SealWrap: entry.SealWrap, } return b.backend.Put(ctx, pe) } // Get is used to fetch an entry func (b *AESGCMBarrier) Get(ctx context.Context, key string) (*logical.StorageEntry, error) { return b.lockSwitchedGet(ctx, key, true) } func (b *AESGCMBarrier) lockSwitchedGet(ctx context.Context, key string, getLock bool) (*logical.StorageEntry, error) { defer metrics.MeasureSince([]string{"barrier", "get"}, time.Now()) if getLock { b.l.RLock() } if b.sealed { if getLock { b.l.RUnlock() } return nil, ErrBarrierSealed } // Read the key from the backend pe, err := b.backend.Get(ctx, key) if err != nil { if getLock { b.l.RUnlock() } return nil, err } else if pe == nil { if getLock { b.l.RUnlock() } return nil, nil } if len(pe.Value) < 4 { if getLock { b.l.RUnlock() } return nil, errors.New("invalid value") } // Verify the term term := binary.BigEndian.Uint32(pe.Value[:4]) // Get the GCM by term // It is expensive to do this first but it is not a // normal case that this won't match gcm, err := b.aeadForTerm(term) if getLock { b.l.RUnlock() } if err != nil { return nil, err } if gcm == nil { return nil, fmt.Errorf("no decryption key available for term %d", term) } // Decrypt the ciphertext plain, err := b.decrypt(key, gcm, pe.Value) if err != nil { return nil, fmt.Errorf("decryption failed: %w", err) } // Wrap in a logical entry entry := &logical.StorageEntry{ Key: key, Value: plain, SealWrap: pe.SealWrap, } return entry, nil } // Delete is used to permanently delete an entry func (b *AESGCMBarrier) Delete(ctx context.Context, key string) error { defer metrics.MeasureSince([]string{"barrier", "delete"}, time.Now()) b.l.RLock() sealed := b.sealed b.l.RUnlock() if sealed { return ErrBarrierSealed } return b.backend.Delete(ctx, key) } // List is used ot list all the keys under a given // prefix, up to the next prefix. func (b *AESGCMBarrier) List(ctx context.Context, prefix string) ([]string, error) { defer metrics.MeasureSince([]string{"barrier", "list"}, time.Now()) b.l.RLock() sealed := b.sealed b.l.RUnlock() if sealed { return nil, ErrBarrierSealed } return b.backend.List(ctx, prefix) } // aeadForTerm returns the AES-GCM AEAD for the given term func (b *AESGCMBarrier) aeadForTerm(term uint32) (cipher.AEAD, error) { // Check for the keyring keyring := b.keyring if keyring == nil { return nil, nil } // Check the cache for the aead b.cacheLock.RLock() aead, ok := b.cache[term] b.cacheLock.RUnlock() if ok { return aead, nil } // Read the underlying key key := keyring.TermKey(term) if key == nil { return nil, nil } // Create a new aead aead, err := b.aeadFromKey(key.Value) if err != nil { return nil, err } // Update the cache b.cacheLock.Lock() b.cache[term] = aead b.cacheLock.Unlock() return aead, nil } // aeadFromKey returns an AES-GCM AEAD using the given key. func (b *AESGCMBarrier) aeadFromKey(key []byte) (cipher.AEAD, error) { // Create the AES cipher aesCipher, err := aes.NewCipher(key) if err != nil { return nil, fmt.Errorf("failed to create cipher: %w", err) } // Create the GCM mode AEAD gcm, err := cipher.NewGCM(aesCipher) if err != nil { return nil, fmt.Errorf("failed to initialize GCM mode") } return gcm, nil } // encrypt is used to encrypt a value func (b *AESGCMBarrier) encrypt(path string, term uint32, gcm cipher.AEAD, plain []byte) ([]byte, error) { // Allocate the output buffer with room for tern, version byte, // nonce, GCM tag and the plaintext capacity := termSize + 1 + gcm.NonceSize() + gcm.Overhead() + len(plain) if capacity < 0 { return nil, ErrPlaintextTooLarge } size := termSize + 1 + gcm.NonceSize() out := make([]byte, size, capacity) // Set the key term binary.BigEndian.PutUint32(out[:4], term) // Set the version byte out[4] = b.currentAESGCMVersionByte // Generate a random nonce nonce := out[5 : 5+gcm.NonceSize()] n, err := rand.Read(nonce) if err != nil { return nil, err } if n != len(nonce) { return nil, errors.New("unable to read enough random bytes to fill gcm nonce") } // Seal the output switch b.currentAESGCMVersionByte { case AESGCMVersion1: out = gcm.Seal(out, nonce, plain, nil) case AESGCMVersion2: aad := []byte(nil) if path != "" { aad = []byte(path) } out = gcm.Seal(out, nonce, plain, aad) default: panic("Unknown AESGCM version") } return out, nil } func termLabel(term uint32) []metrics.Label { return []metrics.Label{ { Name: "term", Value: strconv.FormatUint(uint64(term), 10), }, } } // decrypt is used to decrypt a value using the keyring func (b *AESGCMBarrier) decrypt(path string, gcm cipher.AEAD, cipher []byte) ([]byte, error) { // Capture the parts nonce := cipher[5 : 5+gcm.NonceSize()] raw := cipher[5+gcm.NonceSize():] out := make([]byte, 0, len(raw)-gcm.NonceSize()) // Attempt to open switch cipher[4] { case AESGCMVersion1: return gcm.Open(out, nonce, raw, nil) case AESGCMVersion2: aad := []byte(nil) if path != "" { aad = []byte(path) } return gcm.Open(out, nonce, raw, aad) default: return nil, fmt.Errorf("version bytes mis-match") } } // Encrypt is used to encrypt in-memory for the BarrierEncryptor interface func (b *AESGCMBarrier) Encrypt(ctx context.Context, key string, plaintext []byte) ([]byte, error) { b.l.RLock() if b.sealed { b.l.RUnlock() return nil, ErrBarrierSealed } term := b.keyring.ActiveTerm() primary, err := b.aeadForTerm(term) b.l.RUnlock() if err != nil { return nil, err } ciphertext, err := b.encryptTracked(key, term, primary, plaintext) if err != nil { return nil, err } return ciphertext, nil } // Decrypt is used to decrypt in-memory for the BarrierEncryptor interface func (b *AESGCMBarrier) Decrypt(_ context.Context, key string, ciphertext []byte) ([]byte, error) { b.l.RLock() if b.sealed { b.l.RUnlock() return nil, ErrBarrierSealed } // Verify the term term := binary.BigEndian.Uint32(ciphertext[:4]) // Get the GCM by term // It is expensive to do this first but it is not a // normal case that this won't match gcm, err := b.aeadForTerm(term) b.l.RUnlock() if err != nil { return nil, err } if gcm == nil { return nil, fmt.Errorf("no decryption key available for term %d", term) } // Decrypt the ciphertext plain, err := b.decrypt(key, gcm, ciphertext) if err != nil { return nil, fmt.Errorf("decryption failed: %w", err) } return plain, nil } func (b *AESGCMBarrier) Keyring() (*Keyring, error) { b.l.RLock() defer b.l.RUnlock() if b.sealed { return nil, ErrBarrierSealed } return b.keyring.Clone(), nil } func (b *AESGCMBarrier) ConsumeEncryptionCount(consumer func(int64) error) error { if b.keyring != nil { // Lock to prevent replacement of the key while we consume the encryptions b.l.RLock() defer b.l.RUnlock() c := b.UnaccountedEncryptions.Load() err := consumer(c) if err == nil && c > 0 { // Consumer succeeded, remove those from local encryptions b.UnaccountedEncryptions.Sub(c) } return err } return nil } func (b *AESGCMBarrier) AddRemoteEncryptions(encryptions int64) { // For rollup and persistence b.UnaccountedEncryptions.Add(encryptions) // For testing b.RemoteEncryptions.Add(encryptions) } func (b *AESGCMBarrier) encryptTracked(path string, term uint32, gcm cipher.AEAD, buf []byte) ([]byte, error) { ct, err := b.encrypt(path, term, gcm, buf) if err != nil { return nil, err } // Increment the local encryption count, and track metrics b.UnaccountedEncryptions.Add(1) b.totalLocalEncryptions.Add(1) metrics.IncrCounterWithLabels(barrierEncryptsMetric, 1, termLabel(term)) return ct, nil } // UnaccountedEncryptions returns the number of encryptions made on the local instance only for the current key term func (b *AESGCMBarrier) TotalLocalEncryptions() int64 { return b.totalLocalEncryptions.Load() } func (b *AESGCMBarrier) CheckBarrierAutoRotate(ctx context.Context) (string, error) { const oneYear = 24 * 365 * time.Hour reason, err := func() (string, error) { b.l.RLock() defer b.l.RUnlock() if b.keyring != nil { // Rotation Checks var reason string rc, err := b.RotationConfig() if err != nil { return "", err } if !rc.Disabled { activeKey := b.keyring.ActiveKey() ops := b.encryptions() switch { case activeKey.Encryptions == 0 && !activeKey.InstallTime.IsZero() && time.Since(activeKey.InstallTime) > oneYear: reason = legacyRotateReason case ops > rc.MaxOperations: reason = "reached max operations" case rc.Interval > 0 && time.Since(activeKey.InstallTime) > rc.Interval: reason = "rotation interval reached" } } return reason, nil } return "", nil }() if err != nil { return "", err } if reason != "" { return reason, nil } b.l.Lock() defer b.l.Unlock() if b.keyring != nil { err := b.persistEncryptions(ctx) if err != nil { return "", err } } return reason, nil } // Must be called with lock held func (b *AESGCMBarrier) persistEncryptions(ctx context.Context) error { if !b.sealed { // Encryption count persistence upe := b.UnaccountedEncryptions.Load() if upe > 0 { activeKey := b.keyring.ActiveKey() // Move local (unpersisted) encryptions to the key and persist. This prevents us from needing to persist if // there has been no activity. Since persistence performs an encryption, perversely we zero out after // persistence and add 1 to the count to avoid this operation guaranteeing we need another // autoRotateCheckInterval later. newEncs := upe + 1 activeKey.Encryptions += uint64(newEncs) newKeyring := b.keyring.Clone() err := b.persistKeyring(ctx, newKeyring) if err != nil { return err } b.UnaccountedEncryptions.Sub(newEncs) } } return nil } // Mostly for testing, returns the total number of encryption operations performed on the active term func (b *AESGCMBarrier) encryptions() int64 { if b.keyring != nil { activeKey := b.keyring.ActiveKey() if activeKey != nil { return b.UnaccountedEncryptions.Load() + int64(activeKey.Encryptions) } } return 0 }