package keysutil import ( "bytes" "context" "crypto" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/elliptic" "crypto/hmac" "crypto/rand" "crypto/rsa" "crypto/sha256" "crypto/x509" "encoding/asn1" "encoding/base64" "encoding/json" "encoding/pem" "errors" "fmt" "io" "math/big" "path" "strconv" "strings" "sync" "sync/atomic" "time" "golang.org/x/crypto/chacha20poly1305" "golang.org/x/crypto/ed25519" "golang.org/x/crypto/hkdf" "github.com/hashicorp/errwrap" uuid "github.com/hashicorp/go-uuid" "github.com/hashicorp/vault/sdk/helper/errutil" "github.com/hashicorp/vault/sdk/helper/jsonutil" "github.com/hashicorp/vault/sdk/helper/kdf" "github.com/hashicorp/vault/sdk/logical" ) // Careful with iota; don't put anything before it in this const block because // we need the default of zero to be the old-style KDF const ( Kdf_hmac_sha256_counter = iota // built-in helper Kdf_hkdf_sha256 // golang.org/x/crypto/hkdf ) // Or this one...we need the default of zero to be the original AES256-GCM96 const ( KeyType_AES256_GCM96 = iota KeyType_ECDSA_P256 KeyType_ED25519 KeyType_RSA2048 KeyType_RSA4096 KeyType_ChaCha20_Poly1305 KeyType_ECDSA_P384 KeyType_ECDSA_P521 KeyType_AES128_GCM96 KeyType_RSA3072 ) const ( // ErrTooOld is returned whtn the ciphertext or signatures's key version is // too old. ErrTooOld = "ciphertext or signature version is disallowed by policy (too old)" // DefaultVersionTemplate is used when no version template is provided. DefaultVersionTemplate = "vault:v{{version}}:" ) type RestoreInfo struct { Time time.Time `json:"time"` Version int `json:"version"` } type BackupInfo struct { Time time.Time `json:"time"` Version int `json:"version"` } type SigningResult struct { Signature string PublicKey []byte } type ecdsaSignature struct { R, S *big.Int } type KeyType int func (kt KeyType) EncryptionSupported() bool { switch kt { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305, KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: return true } return false } func (kt KeyType) DecryptionSupported() bool { switch kt { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305, KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: return true } return false } func (kt KeyType) SigningSupported() bool { switch kt { case KeyType_ECDSA_P256, KeyType_ECDSA_P384, KeyType_ECDSA_P521, KeyType_ED25519, KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: return true } return false } func (kt KeyType) HashSignatureInput() bool { switch kt { case KeyType_ECDSA_P256, KeyType_ECDSA_P384, KeyType_ECDSA_P521, KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: return true } return false } func (kt KeyType) DerivationSupported() bool { switch kt { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305, KeyType_ED25519: return true } return false } func (kt KeyType) String() string { switch kt { case KeyType_AES128_GCM96: return "aes128-gcm96" case KeyType_AES256_GCM96: return "aes256-gcm96" case KeyType_ChaCha20_Poly1305: return "chacha20-poly1305" case KeyType_ECDSA_P256: return "ecdsa-p256" case KeyType_ECDSA_P384: return "ecdsa-p384" case KeyType_ECDSA_P521: return "ecdsa-p521" case KeyType_ED25519: return "ed25519" case KeyType_RSA2048: return "rsa-2048" case KeyType_RSA3072: return "rsa-3072" case KeyType_RSA4096: return "rsa-4096" } return "[unknown]" } type KeyData struct { Policy *Policy `json:"policy"` ArchivedKeys *archivedKeys `json:"archived_keys"` } // KeyEntry stores the key and metadata type KeyEntry struct { // AES or some other kind that is a pure byte slice like ED25519 Key []byte `json:"key"` // Key used for HMAC functions HMACKey []byte `json:"hmac_key"` // Time of creation CreationTime time.Time `json:"time"` EC_X *big.Int `json:"ec_x"` EC_Y *big.Int `json:"ec_y"` EC_D *big.Int `json:"ec_d"` RSAKey *rsa.PrivateKey `json:"rsa_key"` // The public key in an appropriate format for the type of key FormattedPublicKey string `json:"public_key"` // If convergent is enabled, the version (falling back to what's in the // policy) ConvergentVersion int `json:"convergent_version"` // This is deprecated (but still filled) in favor of the value above which // is more precise DeprecatedCreationTime int64 `json:"creation_time"` } // deprecatedKeyEntryMap is used to allow JSON marshal/unmarshal type deprecatedKeyEntryMap map[int]KeyEntry // MarshalJSON implements JSON marshaling func (kem deprecatedKeyEntryMap) MarshalJSON() ([]byte, error) { intermediate := map[string]KeyEntry{} for k, v := range kem { intermediate[strconv.Itoa(k)] = v } return json.Marshal(&intermediate) } // MarshalJSON implements JSON unmarshalling func (kem deprecatedKeyEntryMap) UnmarshalJSON(data []byte) error { intermediate := map[string]KeyEntry{} if err := jsonutil.DecodeJSON(data, &intermediate); err != nil { return err } for k, v := range intermediate { keyval, err := strconv.Atoi(k) if err != nil { return err } kem[keyval] = v } return nil } // keyEntryMap is used to allow JSON marshal/unmarshal type keyEntryMap map[string]KeyEntry // PolicyConfig is used to create a new policy type PolicyConfig struct { // The name of the policy Name string `json:"name"` // The type of key Type KeyType // Derived keys MUST provide a context and the master underlying key is // never used. Derived bool KDF int ConvergentEncryption bool // Whether the key is exportable Exportable bool // Whether the key is allowed to be deleted DeletionAllowed bool // AllowPlaintextBackup allows taking backup of the policy in plaintext AllowPlaintextBackup bool // VersionTemplate is used to prefix the ciphertext with information about // the key version. It must inclide {{version}} and a delimiter between the // version prefix and the ciphertext. VersionTemplate string // StoragePrefix is used to add a prefix when storing and retrieving the // policy object. StoragePrefix string } // NewPolicy takes a policy config and returns a Policy with those settings. func NewPolicy(config PolicyConfig) *Policy { return &Policy{ l: new(sync.RWMutex), Name: config.Name, Type: config.Type, Derived: config.Derived, KDF: config.KDF, ConvergentEncryption: config.ConvergentEncryption, ConvergentVersion: -1, Exportable: config.Exportable, DeletionAllowed: config.DeletionAllowed, AllowPlaintextBackup: config.AllowPlaintextBackup, VersionTemplate: config.VersionTemplate, StoragePrefix: config.StoragePrefix, } } // LoadPolicy will load a policy from the provided storage path and set the // necessary un-exported variables. It is particularly useful when accessing a // policy without the lock manager. func LoadPolicy(ctx context.Context, s logical.Storage, path string) (*Policy, error) { raw, err := s.Get(ctx, path) if err != nil { return nil, err } if raw == nil { return nil, nil } var policy Policy err = jsonutil.DecodeJSON(raw.Value, &policy) if err != nil { return nil, err } policy.l = new(sync.RWMutex) return &policy, nil } // Policy is the struct used to store metadata type Policy struct { // This is a pointer on purpose: if we are running with cache disabled we // need to actually swap in the lock manager's lock for this policy with // the local lock. l *sync.RWMutex // writeLocked allows us to implement Lock() and Unlock() writeLocked bool // Stores whether it's been deleted. This acts as a guard for operations // that may write data, e.g. if one request rotates and that request is // served after a delete. deleted uint32 Name string `json:"name"` Key []byte `json:"key,omitempty"` //DEPRECATED Keys keyEntryMap `json:"keys"` // Derived keys MUST provide a context and the master underlying key is // never used. If convergent encryption is true, the context will be used // as the nonce as well. Derived bool `json:"derived"` KDF int `json:"kdf"` ConvergentEncryption bool `json:"convergent_encryption"` // Whether the key is exportable Exportable bool `json:"exportable"` // The minimum version of the key allowed to be used for decryption MinDecryptionVersion int `json:"min_decryption_version"` // The minimum version of the key allowed to be used for encryption MinEncryptionVersion int `json:"min_encryption_version"` // The latest key version in this policy LatestVersion int `json:"latest_version"` // The latest key version in the archive. We never delete these, so this is // a max. ArchiveVersion int `json:"archive_version"` // ArchiveMinVersion is the minimum version of the key in the archive. ArchiveMinVersion int `json:"archive_min_version"` // MinAvailableVersion is the minimum version of the key present. All key // versions before this would have been deleted. MinAvailableVersion int `json:"min_available_version"` // Whether the key is allowed to be deleted DeletionAllowed bool `json:"deletion_allowed"` // The version of the convergent nonce to use ConvergentVersion int `json:"convergent_version"` // The type of key Type KeyType `json:"type"` // BackupInfo indicates the information about the backup action taken on // this policy BackupInfo *BackupInfo `json:"backup_info"` // RestoreInfo indicates the information about the restore action taken on // this policy RestoreInfo *RestoreInfo `json:"restore_info"` // AllowPlaintextBackup allows taking backup of the policy in plaintext AllowPlaintextBackup bool `json:"allow_plaintext_backup"` // VersionTemplate is used to prefix the ciphertext with information about // the key version. It must inclide {{version}} and a delimiter between the // version prefix and the ciphertext. VersionTemplate string `json:"version_template"` // StoragePrefix is used to add a prefix when storing and retrieving the // policy object. StoragePrefix string `json:"storage_prefix"` // versionPrefixCache stores caches of version prefix strings and the split // version template. versionPrefixCache sync.Map } func (p *Policy) Lock(exclusive bool) { if exclusive { p.l.Lock() p.writeLocked = true } else { p.l.RLock() } } func (p *Policy) Unlock() { if p.writeLocked { p.writeLocked = false p.l.Unlock() } else { p.l.RUnlock() } } // ArchivedKeys stores old keys. This is used to keep the key loading time sane // when there are huge numbers of rotations. type archivedKeys struct { Keys []KeyEntry `json:"keys"` } func (p *Policy) LoadArchive(ctx context.Context, storage logical.Storage) (*archivedKeys, error) { archive := &archivedKeys{} raw, err := storage.Get(ctx, path.Join(p.StoragePrefix, "archive", p.Name)) if err != nil { return nil, err } if raw == nil { archive.Keys = make([]KeyEntry, 0) return archive, nil } if err := jsonutil.DecodeJSON(raw.Value, archive); err != nil { return nil, err } return archive, nil } func (p *Policy) storeArchive(ctx context.Context, storage logical.Storage, archive *archivedKeys) error { // Encode the policy buf, err := json.Marshal(archive) if err != nil { return err } // Write the policy into storage err = storage.Put(ctx, &logical.StorageEntry{ Key: path.Join(p.StoragePrefix, "archive", p.Name), Value: buf, }) if err != nil { return err } return nil } // handleArchiving manages the movement of keys to and from the policy archive. // This should *ONLY* be called from Persist() since it assumes that the policy // will be persisted afterwards. func (p *Policy) handleArchiving(ctx context.Context, storage logical.Storage) error { // We need to move keys that are no longer accessible to archivedKeys, and keys // that now need to be accessible back here. // // For safety, because there isn't really a good reason to, we never delete // keys from the archive even when we move them back. // Check if we have the latest minimum version in the current set of keys _, keysContainsMinimum := p.Keys[strconv.Itoa(p.MinDecryptionVersion)] // Sanity checks switch { case p.MinDecryptionVersion < 1: return fmt.Errorf("minimum decryption version of %d is less than 1", p.MinDecryptionVersion) case p.LatestVersion < 1: return fmt.Errorf("latest version of %d is less than 1", p.LatestVersion) case !keysContainsMinimum && p.ArchiveVersion != p.LatestVersion: return fmt.Errorf("need to move keys from archive but archive version not up-to-date") case p.ArchiveVersion > p.LatestVersion: return fmt.Errorf("archive version of %d is greater than the latest version %d", p.ArchiveVersion, p.LatestVersion) case p.MinEncryptionVersion > 0 && p.MinEncryptionVersion < p.MinDecryptionVersion: return fmt.Errorf("minimum decryption version of %d is greater than minimum encryption version %d", p.MinDecryptionVersion, p.MinEncryptionVersion) case p.MinDecryptionVersion > p.LatestVersion: return fmt.Errorf("minimum decryption version of %d is greater than the latest version %d", p.MinDecryptionVersion, p.LatestVersion) } archive, err := p.LoadArchive(ctx, storage) if err != nil { return err } if !keysContainsMinimum { // Need to move keys *from* archive for i := p.MinDecryptionVersion; i <= p.LatestVersion; i++ { p.Keys[strconv.Itoa(i)] = archive.Keys[i-p.MinAvailableVersion] } return nil } // Need to move keys *to* archive // We need a size that is equivalent to the latest version (number of keys) // but adding one since slice numbering starts at 0 and we're indexing by // key version if len(archive.Keys)+p.MinAvailableVersion < p.LatestVersion+1 { // Increase the size of the archive slice newKeys := make([]KeyEntry, p.LatestVersion-p.MinAvailableVersion+1) copy(newKeys, archive.Keys) archive.Keys = newKeys } // We are storing all keys in the archive, so we ensure that it is up to // date up to p.LatestVersion for i := p.ArchiveVersion + 1; i <= p.LatestVersion; i++ { archive.Keys[i-p.MinAvailableVersion] = p.Keys[strconv.Itoa(i)] p.ArchiveVersion = i } // Trim the keys if required if p.ArchiveMinVersion < p.MinAvailableVersion { archive.Keys = archive.Keys[p.MinAvailableVersion-p.ArchiveMinVersion:] p.ArchiveMinVersion = p.MinAvailableVersion } err = p.storeArchive(ctx, storage, archive) if err != nil { return err } // Perform deletion afterwards so that if there is an error saving we // haven't messed with the current policy for i := p.LatestVersion - len(p.Keys) + 1; i < p.MinDecryptionVersion; i++ { delete(p.Keys, strconv.Itoa(i)) } return nil } func (p *Policy) Persist(ctx context.Context, storage logical.Storage) (retErr error) { if atomic.LoadUint32(&p.deleted) == 1 { return errors.New("key has been deleted, not persisting") } // Other functions will take care of restoring other values; this is just // responsible for archiving and keys since the archive function can modify // keys. At the moment one of the other functions calling persist will also // roll back keys, but better safe than sorry and this doesn't happen // enough to worry about the speed tradeoff. priorArchiveVersion := p.ArchiveVersion var priorKeys keyEntryMap if p.Keys != nil { priorKeys = keyEntryMap{} for k, v := range p.Keys { priorKeys[k] = v } } defer func() { if retErr != nil { p.ArchiveVersion = priorArchiveVersion p.Keys = priorKeys } }() err := p.handleArchiving(ctx, storage) if err != nil { return err } // Encode the policy buf, err := p.Serialize() if err != nil { return err } // Write the policy into storage err = storage.Put(ctx, &logical.StorageEntry{ Key: path.Join(p.StoragePrefix, "policy", p.Name), Value: buf, }) if err != nil { return err } return nil } func (p *Policy) Serialize() ([]byte, error) { return json.Marshal(p) } func (p *Policy) NeedsUpgrade() bool { // Ensure we've moved from Key -> Keys if p.Key != nil && len(p.Key) > 0 { return true } // With archiving, past assumptions about the length of the keys map are no // longer valid if p.LatestVersion == 0 && len(p.Keys) != 0 { return true } // We disallow setting the version to 0, since they start at 1 since moving // to rotate-able keys, so update if it's set to 0 if p.MinDecryptionVersion == 0 { return true } // On first load after an upgrade, copy keys to the archive if p.ArchiveVersion == 0 { return true } // Need to write the version if zero; for version 3 on we set this to -1 to // ignore it since we store this information in each key entry if p.ConvergentEncryption && p.ConvergentVersion == 0 { return true } if p.Keys[strconv.Itoa(p.LatestVersion)].HMACKey == nil || len(p.Keys[strconv.Itoa(p.LatestVersion)].HMACKey) == 0 { return true } return false } func (p *Policy) Upgrade(ctx context.Context, storage logical.Storage, randReader io.Reader) (retErr error) { priorKey := p.Key priorLatestVersion := p.LatestVersion priorMinDecryptionVersion := p.MinDecryptionVersion priorConvergentVersion := p.ConvergentVersion var priorKeys keyEntryMap if p.Keys != nil { priorKeys = keyEntryMap{} for k, v := range p.Keys { priorKeys[k] = v } } defer func() { if retErr != nil { p.Key = priorKey p.LatestVersion = priorLatestVersion p.MinDecryptionVersion = priorMinDecryptionVersion p.ConvergentVersion = priorConvergentVersion p.Keys = priorKeys } }() persistNeeded := false // Ensure we've moved from Key -> Keys if p.Key != nil && len(p.Key) > 0 { p.MigrateKeyToKeysMap() persistNeeded = true } // With archiving, past assumptions about the length of the keys map are no // longer valid if p.LatestVersion == 0 && len(p.Keys) != 0 { p.LatestVersion = len(p.Keys) persistNeeded = true } // We disallow setting the version to 0, since they start at 1 since moving // to rotate-able keys, so update if it's set to 0 if p.MinDecryptionVersion == 0 { p.MinDecryptionVersion = 1 persistNeeded = true } // On first load after an upgrade, copy keys to the archive if p.ArchiveVersion == 0 { persistNeeded = true } if p.ConvergentEncryption && p.ConvergentVersion == 0 { p.ConvergentVersion = 1 persistNeeded = true } if p.Keys[strconv.Itoa(p.LatestVersion)].HMACKey == nil || len(p.Keys[strconv.Itoa(p.LatestVersion)].HMACKey) == 0 { entry := p.Keys[strconv.Itoa(p.LatestVersion)] hmacKey, err := uuid.GenerateRandomBytesWithReader(32, randReader) if err != nil { return err } entry.HMACKey = hmacKey p.Keys[strconv.Itoa(p.LatestVersion)] = entry persistNeeded = true } if persistNeeded { err := p.Persist(ctx, storage) if err != nil { return err } } return nil } // GetKey is used to derive the encryption key that should be used depending // on the policy. If derivation is disabled the raw key is used and no context // is required, otherwise the KDF mode is used with the context to derive the // proper key. func (p *Policy) GetKey(context []byte, ver, numBytes int) ([]byte, error) { // Fast-path non-derived keys if !p.Derived { return p.Keys[strconv.Itoa(ver)].Key, nil } return p.DeriveKey(context, nil, ver, numBytes) } // DeriveKey is used to derive a symmetric key given a context and salt. This does not // check the policies Derived flag, but just implements the derivation logic. GetKey // is responsible for switching on the policy config. func (p *Policy) DeriveKey(context, salt []byte, ver int, numBytes int) ([]byte, error) { if !p.Type.DerivationSupported() { return nil, errutil.UserError{Err: fmt.Sprintf("derivation not supported for key type %v", p.Type)} } if p.Keys == nil || p.LatestVersion == 0 { return nil, errutil.InternalError{Err: "unable to access the key; no key versions found"} } if ver <= 0 || ver > p.LatestVersion { return nil, errutil.UserError{Err: "invalid key version"} } // Ensure a context is provided if len(context) == 0 { return nil, errutil.UserError{Err: "missing 'context' for key derivation; the key was created using a derived key, which means additional, per-request information must be included in order to perform operations with the key"} } switch p.KDF { case Kdf_hmac_sha256_counter: prf := kdf.HMACSHA256PRF prfLen := kdf.HMACSHA256PRFLen return kdf.CounterMode(prf, prfLen, p.Keys[strconv.Itoa(ver)].Key, append(context, salt...), 256) case Kdf_hkdf_sha256: reader := hkdf.New(sha256.New, p.Keys[strconv.Itoa(ver)].Key, salt, context) derBytes := bytes.NewBuffer(nil) derBytes.Grow(numBytes) limReader := &io.LimitedReader{ R: reader, N: int64(numBytes), } switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305: n, err := derBytes.ReadFrom(limReader) if err != nil { return nil, errutil.InternalError{Err: fmt.Sprintf("error reading returned derived bytes: %v", err)} } if n != int64(numBytes) { return nil, errutil.InternalError{Err: fmt.Sprintf("unable to read enough derived bytes, needed %d, got %d", numBytes, n)} } return derBytes.Bytes(), nil case KeyType_ED25519: // We use the limited reader containing the derived bytes as the // "random" input to the generation function _, pri, err := ed25519.GenerateKey(limReader) if err != nil { return nil, errutil.InternalError{Err: fmt.Sprintf("error generating derived key: %v", err)} } return pri, nil default: return nil, errutil.InternalError{Err: "unsupported key type for derivation"} } default: return nil, errutil.InternalError{Err: "unsupported key derivation mode"} } } func (p *Policy) convergentVersion(ver int) int { if !p.ConvergentEncryption { return 0 } convergentVersion := p.ConvergentVersion if convergentVersion == 0 { // For some reason, not upgraded yet convergentVersion = 1 } currKey := p.Keys[strconv.Itoa(ver)] if currKey.ConvergentVersion != 0 { convergentVersion = currKey.ConvergentVersion } return convergentVersion } func (p *Policy) Encrypt(ver int, context, nonce []byte, value string) (string, error) { if !p.Type.EncryptionSupported() { return "", errutil.UserError{Err: fmt.Sprintf("message encryption not supported for key type %v", p.Type)} } // Decode the plaintext value plaintext, err := base64.StdEncoding.DecodeString(value) if err != nil { return "", errutil.UserError{Err: err.Error()} } switch { case ver == 0: ver = p.LatestVersion case ver < 0: return "", errutil.UserError{Err: "requested version for encryption is negative"} case ver > p.LatestVersion: return "", errutil.UserError{Err: "requested version for encryption is higher than the latest key version"} case ver < p.MinEncryptionVersion: return "", errutil.UserError{Err: "requested version for encryption is less than the minimum encryption key version"} } var ciphertext []byte switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305: hmacKey := context var encKey []byte var deriveHMAC bool encBytes := 32 hmacBytes := 0 if p.convergentVersion(ver) > 2 { deriveHMAC = true hmacBytes = 32 } if p.Type == KeyType_AES128_GCM96 { encBytes = 16 } key, err := p.GetKey(context, ver, encBytes+hmacBytes) if err != nil { return "", err } if len(key) < encBytes+hmacBytes { return "", errutil.InternalError{Err: "could not derive key, length too small"} } encKey = key[:encBytes] if len(encKey) != encBytes { return "", errutil.InternalError{Err: "could not derive enc key, length not correct"} } if deriveHMAC { hmacKey = key[encBytes:] if len(hmacKey) != hmacBytes { return "", errutil.InternalError{Err: "could not derive hmac key, length not correct"} } } ciphertext, err = p.SymmetricEncryptRaw(ver, encKey, plaintext, SymmetricOpts{ Convergent: p.ConvergentEncryption, HMACKey: hmacKey, Nonce: nonce, }) if err != nil { return "", err } case KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: key := p.Keys[strconv.Itoa(ver)].RSAKey ciphertext, err = rsa.EncryptOAEP(sha256.New(), rand.Reader, &key.PublicKey, plaintext, nil) if err != nil { return "", errutil.InternalError{Err: fmt.Sprintf("failed to RSA encrypt the plaintext: %v", err)} } default: return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)} } // Convert to base64 encoded := base64.StdEncoding.EncodeToString(ciphertext) // Prepend some information encoded = p.getVersionPrefix(ver) + encoded return encoded, nil } func (p *Policy) Decrypt(context, nonce []byte, value string) (string, error) { if !p.Type.DecryptionSupported() { return "", errutil.UserError{Err: fmt.Sprintf("message decryption not supported for key type %v", p.Type)} } tplParts, err := p.getTemplateParts() if err != nil { return "", err } // Verify the prefix if !strings.HasPrefix(value, tplParts[0]) { return "", errutil.UserError{Err: "invalid ciphertext: no prefix"} } splitVerCiphertext := strings.SplitN(strings.TrimPrefix(value, tplParts[0]), tplParts[1], 2) if len(splitVerCiphertext) != 2 { return "", errutil.UserError{Err: "invalid ciphertext: wrong number of fields"} } ver, err := strconv.Atoi(splitVerCiphertext[0]) if err != nil { return "", errutil.UserError{Err: "invalid ciphertext: version number could not be decoded"} } if ver == 0 { // Compatibility mode with initial implementation, where keys start at // zero ver = 1 } if ver > p.LatestVersion { return "", errutil.UserError{Err: "invalid ciphertext: version is too new"} } if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion { return "", errutil.UserError{Err: ErrTooOld} } convergentVersion := p.convergentVersion(ver) if convergentVersion == 1 && (nonce == nil || len(nonce) == 0) { return "", errutil.UserError{Err: "invalid convergent nonce supplied"} } // Decode the base64 decoded, err := base64.StdEncoding.DecodeString(splitVerCiphertext[1]) if err != nil { return "", errutil.UserError{Err: "invalid ciphertext: could not decode base64"} } var plain []byte switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305: numBytes := 32 if p.Type == KeyType_AES128_GCM96 { numBytes = 16 } encKey, err := p.GetKey(context, ver, numBytes) if err != nil { return "", err } if len(encKey) != numBytes { return "", errutil.InternalError{Err: "could not derive enc key, length not correct"} } plain, err = p.SymmetricDecryptRaw(encKey, decoded, SymmetricOpts{ Convergent: p.ConvergentEncryption, ConvergentVersion: p.ConvergentVersion, }) if err != nil { return "", err } case KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: key := p.Keys[strconv.Itoa(ver)].RSAKey plain, err = rsa.DecryptOAEP(sha256.New(), rand.Reader, key, decoded, nil) if err != nil { return "", errutil.InternalError{Err: fmt.Sprintf("failed to RSA decrypt the ciphertext: %v", err)} } default: return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)} } return base64.StdEncoding.EncodeToString(plain), nil } func (p *Policy) HMACKey(version int) ([]byte, error) { switch { case version < 0: return nil, fmt.Errorf("key version does not exist (cannot be negative)") case version > p.LatestVersion: return nil, fmt.Errorf("key version does not exist; latest key version is %d", p.LatestVersion) } if p.Keys[strconv.Itoa(version)].HMACKey == nil { return nil, fmt.Errorf("no HMAC key exists for that key version") } return p.Keys[strconv.Itoa(version)].HMACKey, nil } func (p *Policy) Sign(ver int, context, input []byte, hashAlgorithm HashType, sigAlgorithm string, marshaling MarshalingType) (*SigningResult, error) { if !p.Type.SigningSupported() { return nil, fmt.Errorf("message signing not supported for key type %v", p.Type) } switch { case ver == 0: ver = p.LatestVersion case ver < 0: return nil, errutil.UserError{Err: "requested version for signing is negative"} case ver > p.LatestVersion: return nil, errutil.UserError{Err: "requested version for signing is higher than the latest key version"} case p.MinEncryptionVersion > 0 && ver < p.MinEncryptionVersion: return nil, errutil.UserError{Err: "requested version for signing is less than the minimum encryption key version"} } var sig []byte var pubKey []byte var err error switch p.Type { case KeyType_ECDSA_P256, KeyType_ECDSA_P384, KeyType_ECDSA_P521: var curveBits int var curve elliptic.Curve switch p.Type { case KeyType_ECDSA_P384: curveBits = 384 curve = elliptic.P384() case KeyType_ECDSA_P521: curveBits = 521 curve = elliptic.P521() default: curveBits = 256 curve = elliptic.P256() } keyParams := p.Keys[strconv.Itoa(ver)] key := &ecdsa.PrivateKey{ PublicKey: ecdsa.PublicKey{ Curve: curve, X: keyParams.EC_X, Y: keyParams.EC_Y, }, D: keyParams.EC_D, } r, s, err := ecdsa.Sign(rand.Reader, key, input) if err != nil { return nil, err } switch marshaling { case MarshalingTypeASN1: // This is used by openssl and X.509 sig, err = asn1.Marshal(ecdsaSignature{ R: r, S: s, }) if err != nil { return nil, err } case MarshalingTypeJWS: // This is used by JWS // First we have to get the length of the curve in bytes. Although // we only support 256 now, we'll do this in an agnostic way so we // can reuse this marshaling if we support e.g. 521. Getting the // number of bytes without rounding up would be 65.125 so we need // to add one in that case. keyLen := curveBits / 8 if curveBits%8 > 0 { keyLen++ } // Now create the output array sig = make([]byte, keyLen*2) rb := r.Bytes() sb := s.Bytes() copy(sig[keyLen-len(rb):], rb) copy(sig[2*keyLen-len(sb):], sb) default: return nil, errutil.UserError{Err: "requested marshaling type is invalid"} } case KeyType_ED25519: var key ed25519.PrivateKey if p.Derived { // Derive the key that should be used var err error key, err = p.GetKey(context, ver, 32) if err != nil { return nil, errutil.InternalError{Err: fmt.Sprintf("error deriving key: %v", err)} } pubKey = key.Public().(ed25519.PublicKey) } else { key = ed25519.PrivateKey(p.Keys[strconv.Itoa(ver)].Key) } // Per docs, do not pre-hash ed25519; it does two passes and performs // its own hashing sig, err = key.Sign(rand.Reader, input, crypto.Hash(0)) if err != nil { return nil, err } case KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: key := p.Keys[strconv.Itoa(ver)].RSAKey var algo crypto.Hash switch hashAlgorithm { case HashTypeSHA1: algo = crypto.SHA1 case HashTypeSHA2224: algo = crypto.SHA224 case HashTypeSHA2256: algo = crypto.SHA256 case HashTypeSHA2384: algo = crypto.SHA384 case HashTypeSHA2512: algo = crypto.SHA512 default: return nil, errutil.InternalError{Err: "unsupported hash algorithm"} } if sigAlgorithm == "" { sigAlgorithm = "pss" } switch sigAlgorithm { case "pss": sig, err = rsa.SignPSS(rand.Reader, key, algo, input, nil) if err != nil { return nil, err } case "pkcs1v15": sig, err = rsa.SignPKCS1v15(rand.Reader, key, algo, input) if err != nil { return nil, err } default: return nil, errutil.InternalError{Err: fmt.Sprintf("unsupported rsa signature algorithm %s", sigAlgorithm)} } default: return nil, fmt.Errorf("unsupported key type %v", p.Type) } // Convert to base64 var encoded string switch marshaling { case MarshalingTypeASN1: encoded = base64.StdEncoding.EncodeToString(sig) case MarshalingTypeJWS: encoded = base64.RawURLEncoding.EncodeToString(sig) } res := &SigningResult{ Signature: p.getVersionPrefix(ver) + encoded, PublicKey: pubKey, } return res, nil } func (p *Policy) VerifySignature(context, input []byte, hashAlgorithm HashType, sigAlgorithm string, marshaling MarshalingType, sig string) (bool, error) { if !p.Type.SigningSupported() { return false, errutil.UserError{Err: fmt.Sprintf("message verification not supported for key type %v", p.Type)} } tplParts, err := p.getTemplateParts() if err != nil { return false, err } // Verify the prefix if !strings.HasPrefix(sig, tplParts[0]) { return false, errutil.UserError{Err: "invalid signature: no prefix"} } splitVerSig := strings.SplitN(strings.TrimPrefix(sig, tplParts[0]), tplParts[1], 2) if len(splitVerSig) != 2 { return false, errutil.UserError{Err: "invalid signature: wrong number of fields"} } ver, err := strconv.Atoi(splitVerSig[0]) if err != nil { return false, errutil.UserError{Err: "invalid signature: version number could not be decoded"} } if ver > p.LatestVersion { return false, errutil.UserError{Err: "invalid signature: version is too new"} } if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion { return false, errutil.UserError{Err: ErrTooOld} } var sigBytes []byte switch marshaling { case MarshalingTypeASN1: sigBytes, err = base64.StdEncoding.DecodeString(splitVerSig[1]) case MarshalingTypeJWS: sigBytes, err = base64.RawURLEncoding.DecodeString(splitVerSig[1]) default: return false, errutil.UserError{Err: "requested marshaling type is invalid"} } if err != nil { return false, errutil.UserError{Err: "invalid base64 signature value"} } switch p.Type { case KeyType_ECDSA_P256, KeyType_ECDSA_P384, KeyType_ECDSA_P521: var curve elliptic.Curve switch p.Type { case KeyType_ECDSA_P384: curve = elliptic.P384() case KeyType_ECDSA_P521: curve = elliptic.P521() default: curve = elliptic.P256() } var ecdsaSig ecdsaSignature switch marshaling { case MarshalingTypeASN1: rest, err := asn1.Unmarshal(sigBytes, &ecdsaSig) if err != nil { return false, errutil.UserError{Err: "supplied signature is invalid"} } if rest != nil && len(rest) != 0 { return false, errutil.UserError{Err: "supplied signature contains extra data"} } case MarshalingTypeJWS: paramLen := len(sigBytes) / 2 rb := sigBytes[:paramLen] sb := sigBytes[paramLen:] ecdsaSig.R = new(big.Int) ecdsaSig.R.SetBytes(rb) ecdsaSig.S = new(big.Int) ecdsaSig.S.SetBytes(sb) } keyParams := p.Keys[strconv.Itoa(ver)] key := &ecdsa.PublicKey{ Curve: curve, X: keyParams.EC_X, Y: keyParams.EC_Y, } return ecdsa.Verify(key, input, ecdsaSig.R, ecdsaSig.S), nil case KeyType_ED25519: var key ed25519.PrivateKey if p.Derived { // Derive the key that should be used var err error key, err = p.GetKey(context, ver, 32) if err != nil { return false, errutil.InternalError{Err: fmt.Sprintf("error deriving key: %v", err)} } } else { key = ed25519.PrivateKey(p.Keys[strconv.Itoa(ver)].Key) } return ed25519.Verify(key.Public().(ed25519.PublicKey), input, sigBytes), nil case KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: key := p.Keys[strconv.Itoa(ver)].RSAKey var algo crypto.Hash switch hashAlgorithm { case HashTypeSHA1: algo = crypto.SHA1 case HashTypeSHA2224: algo = crypto.SHA224 case HashTypeSHA2256: algo = crypto.SHA256 case HashTypeSHA2384: algo = crypto.SHA384 case HashTypeSHA2512: algo = crypto.SHA512 default: return false, errutil.InternalError{Err: "unsupported hash algorithm"} } if sigAlgorithm == "" { sigAlgorithm = "pss" } switch sigAlgorithm { case "pss": err = rsa.VerifyPSS(&key.PublicKey, algo, input, sigBytes, nil) case "pkcs1v15": err = rsa.VerifyPKCS1v15(&key.PublicKey, algo, input, sigBytes) default: return false, errutil.InternalError{Err: fmt.Sprintf("unsupported rsa signature algorithm %s", sigAlgorithm)} } return err == nil, nil default: return false, errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)} } } func (p *Policy) Rotate(ctx context.Context, storage logical.Storage, randReader io.Reader) (retErr error) { priorLatestVersion := p.LatestVersion priorMinDecryptionVersion := p.MinDecryptionVersion var priorKeys keyEntryMap if p.Keys != nil { priorKeys = keyEntryMap{} for k, v := range p.Keys { priorKeys[k] = v } } defer func() { if retErr != nil { p.LatestVersion = priorLatestVersion p.MinDecryptionVersion = priorMinDecryptionVersion p.Keys = priorKeys } }() if p.Keys == nil { // This is an initial key rotation when generating a new policy. We // don't need to call migrate here because if we've called getPolicy to // get the policy in the first place it will have been run. p.Keys = keyEntryMap{} } p.LatestVersion += 1 now := time.Now() entry := KeyEntry{ CreationTime: now, DeprecatedCreationTime: now.Unix(), } hmacKey, err := uuid.GenerateRandomBytesWithReader(32, randReader) if err != nil { return err } entry.HMACKey = hmacKey switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96, KeyType_ChaCha20_Poly1305: // Default to 256 bit key numBytes := 32 if p.Type == KeyType_AES128_GCM96 { numBytes = 16 } newKey, err := uuid.GenerateRandomBytesWithReader(numBytes, randReader) if err != nil { return err } entry.Key = newKey case KeyType_ECDSA_P256, KeyType_ECDSA_P384, KeyType_ECDSA_P521: var curve elliptic.Curve switch p.Type { case KeyType_ECDSA_P384: curve = elliptic.P384() case KeyType_ECDSA_P521: curve = elliptic.P521() default: curve = elliptic.P256() } privKey, err := ecdsa.GenerateKey(curve, rand.Reader) if err != nil { return err } entry.EC_D = privKey.D entry.EC_X = privKey.X entry.EC_Y = privKey.Y derBytes, err := x509.MarshalPKIXPublicKey(privKey.Public()) if err != nil { return errwrap.Wrapf("error marshaling public key: {{err}}", err) } pemBlock := &pem.Block{ Type: "PUBLIC KEY", Bytes: derBytes, } pemBytes := pem.EncodeToMemory(pemBlock) if pemBytes == nil || len(pemBytes) == 0 { return fmt.Errorf("error PEM-encoding public key") } entry.FormattedPublicKey = string(pemBytes) case KeyType_ED25519: pub, pri, err := ed25519.GenerateKey(randReader) if err != nil { return err } entry.Key = pri entry.FormattedPublicKey = base64.StdEncoding.EncodeToString(pub) case KeyType_RSA2048, KeyType_RSA3072, KeyType_RSA4096: bitSize := 2048 if p.Type == KeyType_RSA3072 { bitSize = 3072 } if p.Type == KeyType_RSA4096 { bitSize = 4096 } entry.RSAKey, err = rsa.GenerateKey(randReader, bitSize) if err != nil { return err } } if p.ConvergentEncryption { if p.ConvergentVersion == -1 || p.ConvergentVersion > 1 { entry.ConvergentVersion = currentConvergentVersion } } p.Keys[strconv.Itoa(p.LatestVersion)] = entry // This ensures that with new key creations min decryption version is set // to 1 rather than the int default of 0, since keys start at 1 (either // fresh or after migration to the key map) if p.MinDecryptionVersion == 0 { p.MinDecryptionVersion = 1 } return p.Persist(ctx, storage) } func (p *Policy) MigrateKeyToKeysMap() { now := time.Now() p.Keys = keyEntryMap{ "1": KeyEntry{ Key: p.Key, CreationTime: now, DeprecatedCreationTime: now.Unix(), }, } p.Key = nil } // Backup should be called with an exclusive lock held on the policy func (p *Policy) Backup(ctx context.Context, storage logical.Storage) (out string, retErr error) { if !p.Exportable { return "", fmt.Errorf("exporting is disallowed on the policy") } if !p.AllowPlaintextBackup { return "", fmt.Errorf("plaintext backup is disallowed on the policy") } priorBackupInfo := p.BackupInfo defer func() { if retErr != nil { p.BackupInfo = priorBackupInfo } }() // Create a record of this backup operation in the policy p.BackupInfo = &BackupInfo{ Time: time.Now(), Version: p.LatestVersion, } err := p.Persist(ctx, storage) if err != nil { return "", errwrap.Wrapf("failed to persist policy with backup info: {{err}}", err) } // Load the archive only after persisting the policy as the archive can get // adjusted while persisting the policy archivedKeys, err := p.LoadArchive(ctx, storage) if err != nil { return "", err } keyData := &KeyData{ Policy: p, ArchivedKeys: archivedKeys, } encodedBackup, err := jsonutil.EncodeJSON(keyData) if err != nil { return "", err } return base64.StdEncoding.EncodeToString(encodedBackup), nil } func (p *Policy) getTemplateParts() ([]string, error) { partsRaw, ok := p.versionPrefixCache.Load("template-parts") if ok { return partsRaw.([]string), nil } template := p.VersionTemplate if template == "" { template = DefaultVersionTemplate } tplParts := strings.Split(template, "{{version}}") if len(tplParts) != 2 { return nil, errutil.InternalError{Err: "error parsing version template"} } p.versionPrefixCache.Store("template-parts", tplParts) return tplParts, nil } func (p *Policy) getVersionPrefix(ver int) string { prefixRaw, ok := p.versionPrefixCache.Load(ver) if ok { return prefixRaw.(string) } template := p.VersionTemplate if template == "" { template = DefaultVersionTemplate } prefix := strings.Replace(template, "{{version}}", strconv.Itoa(ver), -1) p.versionPrefixCache.Store(ver, prefix) return prefix } // SymmetricOpts are the arguments to symmetric operations that are "optional", e.g. // not always used. This improves the aesthetics of calls to those functions. type SymmetricOpts struct { // Whether to use convergent encryption Convergent bool // The version of the convergent encryption scheme ConvergentVersion int // The nonce, if not randomly generated Nonce []byte // Additional data to include in AEAD authentication AdditionalData []byte // The HMAC key, for generating IVs in convergent encryption HMACKey []byte } // Symmetrically encrypt a plaintext given the convergence configuration and appropriate keys func (p *Policy) SymmetricEncryptRaw(ver int, encKey, plaintext []byte, opts SymmetricOpts) ([]byte, error) { var aead cipher.AEAD var err error nonce := opts.Nonce switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96: // Setup the cipher aesCipher, err := aes.NewCipher(encKey) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } // Setup the GCM AEAD gcm, err := cipher.NewGCM(aesCipher) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } aead = gcm case KeyType_ChaCha20_Poly1305: cha, err := chacha20poly1305.New(encKey) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } aead = cha } if opts.Convergent { convergentVersion := p.convergentVersion(ver) switch convergentVersion { case 1: if len(opts.Nonce) != aead.NonceSize() { return nil, errutil.UserError{Err: fmt.Sprintf("base64-decoded nonce must be %d bytes long when using convergent encryption with this key", aead.NonceSize())} } case 2, 3: if len(opts.HMACKey) == 0 { return nil, errutil.InternalError{Err: fmt.Sprintf("invalid hmac key length of zero")} } nonceHmac := hmac.New(sha256.New, opts.HMACKey) nonceHmac.Write(plaintext) nonceSum := nonceHmac.Sum(nil) nonce = nonceSum[:aead.NonceSize()] default: return nil, errutil.InternalError{Err: fmt.Sprintf("unhandled convergent version %d", convergentVersion)} } } else if len(nonce) == 0 { // Compute random nonce nonce, err = uuid.GenerateRandomBytes(aead.NonceSize()) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } } // Encrypt and tag with AEAD ciphertext := aead.Seal(nil, nonce, plaintext, opts.AdditionalData) // Place the encrypted data after the nonce if !opts.Convergent || p.convergentVersion(ver) > 1 { ciphertext = append(nonce, ciphertext...) } return ciphertext, nil } // Symmetrically decrypt a ciphertext given the convergence configuration and appropriate keys func (p *Policy) SymmetricDecryptRaw(encKey, ciphertext []byte, opts SymmetricOpts) ([]byte, error) { var aead cipher.AEAD var nonce []byte switch p.Type { case KeyType_AES128_GCM96, KeyType_AES256_GCM96: // Setup the cipher aesCipher, err := aes.NewCipher(encKey) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } // Setup the GCM AEAD gcm, err := cipher.NewGCM(aesCipher) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } aead = gcm case KeyType_ChaCha20_Poly1305: cha, err := chacha20poly1305.New(encKey) if err != nil { return nil, errutil.InternalError{Err: err.Error()} } aead = cha } if len(ciphertext) < aead.NonceSize() { return nil, errutil.UserError{Err: "invalid ciphertext length"} } // Extract the nonce and ciphertext var trueCT []byte if opts.Convergent && opts.ConvergentVersion == 1 { trueCT = ciphertext } else { nonce = ciphertext[:aead.NonceSize()] trueCT = ciphertext[aead.NonceSize():] } // Verify and Decrypt plain, err := aead.Open(nil, nonce, trueCT, opts.AdditionalData) if err != nil { return nil, err } return plain, nil }