package transit import ( "crypto/elliptic" "fmt" "strconv" "github.com/hashicorp/vault/helper/keysutil" "github.com/hashicorp/vault/logical" "github.com/hashicorp/vault/logical/framework" ) func (b *backend) pathListKeys() *framework.Path { return &framework.Path{ Pattern: "keys/?$", Callbacks: map[logical.Operation]framework.OperationFunc{ logical.ListOperation: b.pathKeysList, }, HelpSynopsis: pathPolicyHelpSyn, HelpDescription: pathPolicyHelpDesc, } } func (b *backend) pathKeys() *framework.Path { return &framework.Path{ Pattern: "keys/" + framework.GenericNameRegex("name"), Fields: map[string]*framework.FieldSchema{ "name": &framework.FieldSchema{ Type: framework.TypeString, Description: "Name of the key", }, "type": &framework.FieldSchema{ Type: framework.TypeString, Default: "aes256-gcm96", Description: `The type of key to create. Currently, "aes256-gcm96" (symmetric) and "ecdsa-p256" (asymmetric) are supported. Defaults to "aes256-gcm96".`, }, "derived": &framework.FieldSchema{ Type: framework.TypeBool, Description: `Enables key derivation mode. This allows for per-transaction unique keys for encryption operations.`, }, "convergent_encryption": &framework.FieldSchema{ Type: framework.TypeBool, Description: `Whether to support convergent encryption. This is only supported when using a key with key derivation enabled and will require all requests to carry both a context and 96-bit (12-byte) nonce. The given nonce will be used in place of a randomly generated nonce. As a result, when the same context and nonce are supplied, the same ciphertext is generated. It is *very important* when using this mode that you ensure that all nonces are unique for a given context. Failing to do so will severely impact the ciphertext's security.`, }, "exportable": &framework.FieldSchema{ Type: framework.TypeBool, Description: `Enables keys to be exportable. This allows for all the valid keys in the key ring to be exported.`, }, }, Callbacks: map[logical.Operation]framework.OperationFunc{ logical.UpdateOperation: b.pathPolicyWrite, logical.DeleteOperation: b.pathPolicyDelete, logical.ReadOperation: b.pathPolicyRead, }, HelpSynopsis: pathPolicyHelpSyn, HelpDescription: pathPolicyHelpDesc, } } func (b *backend) pathKeysList( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { entries, err := req.Storage.List("policy/") if err != nil { return nil, err } return logical.ListResponse(entries), nil } func (b *backend) pathPolicyWrite( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { name := d.Get("name").(string) derived := d.Get("derived").(bool) convergent := d.Get("convergent_encryption").(bool) keyType := d.Get("type").(string) exportable := d.Get("exportable").(bool) if !derived && convergent { return logical.ErrorResponse("convergent encryption requires derivation to be enabled"), nil } polReq := keysutil.PolicyRequest{ Storage: req.Storage, Name: name, Derived: derived, Convergent: convergent, Exportable: exportable, } switch keyType { case "aes256-gcm96": polReq.KeyType = keysutil.KeyType_AES256_GCM96 case "ecdsa-p256": polReq.KeyType = keysutil.KeyType_ECDSA_P256 default: return logical.ErrorResponse(fmt.Sprintf("unknown key type %v", keyType)), logical.ErrInvalidRequest } p, lock, upserted, err := b.lm.GetPolicyUpsert(polReq) if lock != nil { defer lock.RUnlock() } if err != nil { return nil, err } if p == nil { return nil, fmt.Errorf("error generating key: returned policy was nil") } resp := &logical.Response{} if !upserted { resp.AddWarning(fmt.Sprintf("key %s already existed", name)) } return nil, nil } func (b *backend) pathPolicyRead( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { name := d.Get("name").(string) p, lock, err := b.lm.GetPolicyShared(req.Storage, name) if lock != nil { defer lock.RUnlock() } if err != nil { return nil, err } if p == nil { return nil, nil } // Return the response resp := &logical.Response{ Data: map[string]interface{}{ "name": p.Name, "type": p.Type.String(), "derived": p.Derived, "deletion_allowed": p.DeletionAllowed, "min_decryption_version": p.MinDecryptionVersion, "latest_version": p.LatestVersion, "exportable": p.Exportable, "supports_encryption": p.Type.EncryptionSupported(), "supports_decryption": p.Type.DecryptionSupported(), "supports_signing": p.Type.SigningSupported(), "supports_derivation": p.Type.DerivationSupported(), }, } if p.Derived { switch p.KDF { case keysutil.Kdf_hmac_sha256_counter: resp.Data["kdf"] = "hmac-sha256-counter" resp.Data["kdf_mode"] = "hmac-sha256-counter" case keysutil.Kdf_hkdf_sha256: resp.Data["kdf"] = "hkdf_sha256" } resp.Data["convergent_encryption"] = p.ConvergentEncryption if p.ConvergentEncryption { resp.Data["convergent_encryption_version"] = p.ConvergentVersion } } switch p.Type { case keysutil.KeyType_AES256_GCM96: retKeys := map[string]int64{} for k, v := range p.Keys { retKeys[strconv.Itoa(k)] = v.CreationTime } resp.Data["keys"] = retKeys case keysutil.KeyType_ECDSA_P256: type ecdsaKey struct { Name string `json:"name"` PublicKey string `json:"public_key"` } retKeys := map[string]ecdsaKey{} for k, v := range p.Keys { retKeys[strconv.Itoa(k)] = ecdsaKey{ Name: elliptic.P256().Params().Name, PublicKey: v.FormattedPublicKey, } } resp.Data["keys"] = retKeys } return resp, nil } func (b *backend) pathPolicyDelete( req *logical.Request, d *framework.FieldData) (*logical.Response, error) { name := d.Get("name").(string) // Delete does its own locking err := b.lm.DeletePolicy(req.Storage, name) if err != nil { return logical.ErrorResponse(fmt.Sprintf("error deleting policy %s: %s", name, err)), err } return nil, nil } const pathPolicyHelpSyn = `Managed named encryption keys` const pathPolicyHelpDesc = ` This path is used to manage the named keys that are available. Doing a write with no value against a new named key will create it using a randomly generated key. `