package lz4 import ( "encoding/binary" "fmt" "math/bits" ) // blockHash hashes the lower 6 bytes into a value < htSize. func blockHash(x uint64) uint32 { const prime6bytes = 227718039650203 return uint32(((x << (64 - 48)) * prime6bytes) >> (64 - hashLog)) } // CompressBlockBound returns the maximum size of a given buffer of size n, when not compressible. func CompressBlockBound(n int) int { return n + n/255 + 16 } // UncompressBlock uncompresses the source buffer into the destination one, // and returns the uncompressed size. // // The destination buffer must be sized appropriately. // // An error is returned if the source data is invalid or the destination buffer is too small. func UncompressBlock(src, dst []byte) (int, error) { if len(src) == 0 { return 0, nil } if di := decodeBlock(dst, src); di >= 0 { return di, nil } return 0, ErrInvalidSourceShortBuffer } // CompressBlock compresses the source buffer into the destination one. // This is the fast version of LZ4 compression and also the default one. // The size of hashTable must be at least 64Kb. // // The size of the compressed data is returned. If it is 0 and no error, then the data is incompressible. // // An error is returned if the destination buffer is too small. func CompressBlock(src, dst []byte, hashTable []int) (di int, err error) { defer recoverBlock(&err) // adaptSkipLog sets how quickly the compressor begins skipping blocks when data is incompressible. // This significantly speeds up incompressible data and usually has very small impact on compresssion. // bytes to skip = 1 + (bytes since last match >> adaptSkipLog) const adaptSkipLog = 7 sn, dn := len(src)-mfLimit, len(dst) if sn <= 0 || dn == 0 { return 0, nil } if len(hashTable) < htSize { return 0, fmt.Errorf("hash table too small, should be at least %d in size", htSize) } // Prove to the compiler the table has at least htSize elements. // The compiler can see that "uint32() >> hashShift" cannot be out of bounds. hashTable = hashTable[:htSize] // si: Current position of the search. // anchor: Position of the current literals. var si, anchor int // Fast scan strategy: the hash table only stores the last 4 bytes sequences. for si < sn { // Hash the next 6 bytes (sequence)... match := binary.LittleEndian.Uint64(src[si:]) h := blockHash(match) h2 := blockHash(match >> 8) // We check a match at s, s+1 and s+2 and pick the first one we get. // Checking 3 only requires us to load the source one. ref := hashTable[h] ref2 := hashTable[h2] hashTable[h] = si hashTable[h2] = si + 1 offset := si - ref // If offset <= 0 we got an old entry in the hash table. if offset <= 0 || offset >= winSize || // Out of window. uint32(match) != binary.LittleEndian.Uint32(src[ref:]) { // Hash collision on different matches. // No match. Start calculating another hash. // The processor can usually do this out-of-order. h = blockHash(match >> 16) ref = hashTable[h] // Check the second match at si+1 si += 1 offset = si - ref2 if offset <= 0 || offset >= winSize || uint32(match>>8) != binary.LittleEndian.Uint32(src[ref2:]) { // No match. Check the third match at si+2 si += 1 offset = si - ref hashTable[h] = si if offset <= 0 || offset >= winSize || uint32(match>>16) != binary.LittleEndian.Uint32(src[ref:]) { // Skip one extra byte (at si+3) before we check 3 matches again. si += 2 + (si-anchor)>>adaptSkipLog continue } } } // Match found. lLen := si - anchor // Literal length. // We already matched 4 bytes. mLen := 4 // Extend backwards if we can, reducing literals. tOff := si - offset - 1 for lLen > 0 && tOff >= 0 && src[si-1] == src[tOff] { si-- tOff-- lLen-- mLen++ } // Add the match length, so we continue search at the end. // Use mLen to store the offset base. si, mLen = si+mLen, si+minMatch // Find the longest match by looking by batches of 8 bytes. for si < sn { x := binary.LittleEndian.Uint64(src[si:]) ^ binary.LittleEndian.Uint64(src[si-offset:]) if x == 0 { si += 8 } else { // Stop is first non-zero byte. si += bits.TrailingZeros64(x) >> 3 break } } mLen = si - mLen if mLen < 0xF { dst[di] = byte(mLen) } else { dst[di] = 0xF } // Encode literals length. if lLen < 0xF { dst[di] |= byte(lLen << 4) } else { dst[di] |= 0xF0 di++ l := lLen - 0xF for ; l >= 0xFF; l -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(l) } di++ // Literals. copy(dst[di:di+lLen], src[anchor:anchor+lLen]) di += lLen + 2 anchor = si // Encode offset. _ = dst[di] // Bound check elimination. dst[di-2], dst[di-1] = byte(offset), byte(offset>>8) // Encode match length part 2. if mLen >= 0xF { for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(mLen) di++ } // Check if we can load next values. if si >= sn { break } // Hash match end-2 h = blockHash(binary.LittleEndian.Uint64(src[si-2:])) hashTable[h] = si - 2 } if anchor == 0 { // Incompressible. return 0, nil } // Last literals. lLen := len(src) - anchor if lLen < 0xF { dst[di] = byte(lLen << 4) } else { dst[di] = 0xF0 di++ for lLen -= 0xF; lLen >= 0xFF; lLen -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(lLen) } di++ // Write the last literals. if di >= anchor { // Incompressible. return 0, nil } di += copy(dst[di:di+len(src)-anchor], src[anchor:]) return di, nil } // blockHash hashes 4 bytes into a value < winSize. func blockHashHC(x uint32) uint32 { const hasher uint32 = 2654435761 // Knuth multiplicative hash. return x * hasher >> (32 - winSizeLog) } // CompressBlockHC compresses the source buffer src into the destination dst // with max search depth (use 0 or negative value for no max). // // CompressBlockHC compression ratio is better than CompressBlock but it is also slower. // // The size of the compressed data is returned. If it is 0 and no error, then the data is not compressible. // // An error is returned if the destination buffer is too small. func CompressBlockHC(src, dst []byte, depth int) (di int, err error) { defer recoverBlock(&err) // adaptSkipLog sets how quickly the compressor begins skipping blocks when data is incompressible. // This significantly speeds up incompressible data and usually has very small impact on compresssion. // bytes to skip = 1 + (bytes since last match >> adaptSkipLog) const adaptSkipLog = 7 sn, dn := len(src)-mfLimit, len(dst) if sn <= 0 || dn == 0 { return 0, nil } var si int // hashTable: stores the last position found for a given hash // chainTable: stores previous positions for a given hash var hashTable, chainTable [winSize]int if depth <= 0 { depth = winSize } anchor := si for si < sn { // Hash the next 4 bytes (sequence). match := binary.LittleEndian.Uint32(src[si:]) h := blockHashHC(match) // Follow the chain until out of window and give the longest match. mLen := 0 offset := 0 for next, try := hashTable[h], depth; try > 0 && next > 0 && si-next < winSize; next = chainTable[next&winMask] { // The first (mLen==0) or next byte (mLen>=minMatch) at current match length // must match to improve on the match length. if src[next+mLen] != src[si+mLen] { continue } ml := 0 // Compare the current position with a previous with the same hash. for ml < sn-si { x := binary.LittleEndian.Uint64(src[next+ml:]) ^ binary.LittleEndian.Uint64(src[si+ml:]) if x == 0 { ml += 8 } else { // Stop is first non-zero byte. ml += bits.TrailingZeros64(x) >> 3 break } } if ml < minMatch || ml <= mLen { // Match too small (>adaptSkipLog continue } // Match found. // Update hash/chain tables with overlapping bytes: // si already hashed, add everything from si+1 up to the match length. winStart := si + 1 if ws := si + mLen - winSize; ws > winStart { winStart = ws } for si, ml := winStart, si+mLen; si < ml; { match >>= 8 match |= uint32(src[si+3]) << 24 h := blockHashHC(match) chainTable[si&winMask] = hashTable[h] hashTable[h] = si si++ } lLen := si - anchor si += mLen mLen -= minMatch // Match length does not include minMatch. if mLen < 0xF { dst[di] = byte(mLen) } else { dst[di] = 0xF } // Encode literals length. if lLen < 0xF { dst[di] |= byte(lLen << 4) } else { dst[di] |= 0xF0 di++ l := lLen - 0xF for ; l >= 0xFF; l -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(l) } di++ // Literals. copy(dst[di:di+lLen], src[anchor:anchor+lLen]) di += lLen anchor = si // Encode offset. di += 2 dst[di-2], dst[di-1] = byte(offset), byte(offset>>8) // Encode match length part 2. if mLen >= 0xF { for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(mLen) di++ } } if anchor == 0 { // Incompressible. return 0, nil } // Last literals. lLen := len(src) - anchor if lLen < 0xF { dst[di] = byte(lLen << 4) } else { dst[di] = 0xF0 di++ lLen -= 0xF for ; lLen >= 0xFF; lLen -= 0xFF { dst[di] = 0xFF di++ } dst[di] = byte(lLen) } di++ // Write the last literals. if di >= anchor { // Incompressible. return 0, nil } di += copy(dst[di:di+len(src)-anchor], src[anchor:]) return di, nil }