package dns import ( "bytes" "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" _ "crypto/md5" "crypto/rand" "crypto/rsa" _ "crypto/sha1" _ "crypto/sha256" _ "crypto/sha512" "encoding/asn1" "encoding/binary" "encoding/hex" "math/big" "sort" "strings" "time" "golang.org/x/crypto/ed25519" ) // DNSSEC encryption algorithm codes. const ( _ uint8 = iota RSAMD5 DH DSA _ // Skip 4, RFC 6725, section 2.1 RSASHA1 DSANSEC3SHA1 RSASHA1NSEC3SHA1 RSASHA256 _ // Skip 9, RFC 6725, section 2.1 RSASHA512 _ // Skip 11, RFC 6725, section 2.1 ECCGOST ECDSAP256SHA256 ECDSAP384SHA384 ED25519 ED448 INDIRECT uint8 = 252 PRIVATEDNS uint8 = 253 // Private (experimental keys) PRIVATEOID uint8 = 254 ) // AlgorithmToString is a map of algorithm IDs to algorithm names. var AlgorithmToString = map[uint8]string{ RSAMD5: "RSAMD5", DH: "DH", DSA: "DSA", RSASHA1: "RSASHA1", DSANSEC3SHA1: "DSA-NSEC3-SHA1", RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1", RSASHA256: "RSASHA256", RSASHA512: "RSASHA512", ECCGOST: "ECC-GOST", ECDSAP256SHA256: "ECDSAP256SHA256", ECDSAP384SHA384: "ECDSAP384SHA384", ED25519: "ED25519", ED448: "ED448", INDIRECT: "INDIRECT", PRIVATEDNS: "PRIVATEDNS", PRIVATEOID: "PRIVATEOID", } // StringToAlgorithm is the reverse of AlgorithmToString. var StringToAlgorithm = reverseInt8(AlgorithmToString) // AlgorithmToHash is a map of algorithm crypto hash IDs to crypto.Hash's. var AlgorithmToHash = map[uint8]crypto.Hash{ RSAMD5: crypto.MD5, // Deprecated in RFC 6725 DSA: crypto.SHA1, RSASHA1: crypto.SHA1, RSASHA1NSEC3SHA1: crypto.SHA1, RSASHA256: crypto.SHA256, ECDSAP256SHA256: crypto.SHA256, ECDSAP384SHA384: crypto.SHA384, RSASHA512: crypto.SHA512, ED25519: crypto.Hash(0), } // DNSSEC hashing algorithm codes. const ( _ uint8 = iota SHA1 // RFC 4034 SHA256 // RFC 4509 GOST94 // RFC 5933 SHA384 // Experimental SHA512 // Experimental ) // HashToString is a map of hash IDs to names. var HashToString = map[uint8]string{ SHA1: "SHA1", SHA256: "SHA256", GOST94: "GOST94", SHA384: "SHA384", SHA512: "SHA512", } // StringToHash is a map of names to hash IDs. var StringToHash = reverseInt8(HashToString) // DNSKEY flag values. const ( SEP = 1 REVOKE = 1 << 7 ZONE = 1 << 8 ) // The RRSIG needs to be converted to wireformat with some of the rdata (the signature) missing. type rrsigWireFmt struct { TypeCovered uint16 Algorithm uint8 Labels uint8 OrigTtl uint32 Expiration uint32 Inception uint32 KeyTag uint16 SignerName string `dns:"domain-name"` /* No Signature */ } // Used for converting DNSKEY's rdata to wirefmt. type dnskeyWireFmt struct { Flags uint16 Protocol uint8 Algorithm uint8 PublicKey string `dns:"base64"` /* Nothing is left out */ } func divRoundUp(a, b int) int { return (a + b - 1) / b } // KeyTag calculates the keytag (or key-id) of the DNSKEY. func (k *DNSKEY) KeyTag() uint16 { if k == nil { return 0 } var keytag int switch k.Algorithm { case RSAMD5: // Look at the bottom two bytes of the modules, which the last // item in the pubkey. We could do this faster by looking directly // at the base64 values. But I'm lazy. modulus, _ := fromBase64([]byte(k.PublicKey)) if len(modulus) > 1 { x := binary.BigEndian.Uint16(modulus[len(modulus)-2:]) keytag = int(x) } default: keywire := new(dnskeyWireFmt) keywire.Flags = k.Flags keywire.Protocol = k.Protocol keywire.Algorithm = k.Algorithm keywire.PublicKey = k.PublicKey wire := make([]byte, DefaultMsgSize) n, err := packKeyWire(keywire, wire) if err != nil { return 0 } wire = wire[:n] for i, v := range wire { if i&1 != 0 { keytag += int(v) // must be larger than uint32 } else { keytag += int(v) << 8 } } keytag += (keytag >> 16) & 0xFFFF keytag &= 0xFFFF } return uint16(keytag) } // ToDS converts a DNSKEY record to a DS record. func (k *DNSKEY) ToDS(h uint8) *DS { if k == nil { return nil } ds := new(DS) ds.Hdr.Name = k.Hdr.Name ds.Hdr.Class = k.Hdr.Class ds.Hdr.Rrtype = TypeDS ds.Hdr.Ttl = k.Hdr.Ttl ds.Algorithm = k.Algorithm ds.DigestType = h ds.KeyTag = k.KeyTag() keywire := new(dnskeyWireFmt) keywire.Flags = k.Flags keywire.Protocol = k.Protocol keywire.Algorithm = k.Algorithm keywire.PublicKey = k.PublicKey wire := make([]byte, DefaultMsgSize) n, err := packKeyWire(keywire, wire) if err != nil { return nil } wire = wire[:n] owner := make([]byte, 255) off, err1 := PackDomainName(strings.ToLower(k.Hdr.Name), owner, 0, nil, false) if err1 != nil { return nil } owner = owner[:off] // RFC4034: // digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA); // "|" denotes concatenation // DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. var hash crypto.Hash switch h { case SHA1: hash = crypto.SHA1 case SHA256: hash = crypto.SHA256 case SHA384: hash = crypto.SHA384 case SHA512: hash = crypto.SHA512 default: return nil } s := hash.New() s.Write(owner) s.Write(wire) ds.Digest = hex.EncodeToString(s.Sum(nil)) return ds } // ToCDNSKEY converts a DNSKEY record to a CDNSKEY record. func (k *DNSKEY) ToCDNSKEY() *CDNSKEY { c := &CDNSKEY{DNSKEY: *k} c.Hdr = k.Hdr c.Hdr.Rrtype = TypeCDNSKEY return c } // ToCDS converts a DS record to a CDS record. func (d *DS) ToCDS() *CDS { c := &CDS{DS: *d} c.Hdr = d.Hdr c.Hdr.Rrtype = TypeCDS return c } // Sign signs an RRSet. The signature needs to be filled in with the values: // Inception, Expiration, KeyTag, SignerName and Algorithm. The rest is copied // from the RRset. Sign returns a non-nill error when the signing went OK. // There is no check if RRSet is a proper (RFC 2181) RRSet. If OrigTTL is non // zero, it is used as-is, otherwise the TTL of the RRset is used as the // OrigTTL. func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error { if k == nil { return ErrPrivKey } // s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 { return ErrKey } rr.Hdr.Rrtype = TypeRRSIG rr.Hdr.Name = rrset[0].Header().Name rr.Hdr.Class = rrset[0].Header().Class if rr.OrigTtl == 0 { // If set don't override rr.OrigTtl = rrset[0].Header().Ttl } rr.TypeCovered = rrset[0].Header().Rrtype rr.Labels = uint8(CountLabel(rrset[0].Header().Name)) if strings.HasPrefix(rrset[0].Header().Name, "*") { rr.Labels-- // wildcard, remove from label count } sigwire := new(rrsigWireFmt) sigwire.TypeCovered = rr.TypeCovered sigwire.Algorithm = rr.Algorithm sigwire.Labels = rr.Labels sigwire.OrigTtl = rr.OrigTtl sigwire.Expiration = rr.Expiration sigwire.Inception = rr.Inception sigwire.KeyTag = rr.KeyTag // For signing, lowercase this name sigwire.SignerName = strings.ToLower(rr.SignerName) // Create the desired binary blob signdata := make([]byte, DefaultMsgSize) n, err := packSigWire(sigwire, signdata) if err != nil { return err } signdata = signdata[:n] wire, err := rawSignatureData(rrset, rr) if err != nil { return err } hash, ok := AlgorithmToHash[rr.Algorithm] if !ok { return ErrAlg } switch rr.Algorithm { case ED25519: // ed25519 signs the raw message and performs hashing internally. // All other supported signature schemes operate over the pre-hashed // message, and thus ed25519 must be handled separately here. // // The raw message is passed directly into sign and crypto.Hash(0) is // used to signal to the crypto.Signer that the data has not been hashed. signature, err := sign(k, append(signdata, wire...), crypto.Hash(0), rr.Algorithm) if err != nil { return err } rr.Signature = toBase64(signature) default: h := hash.New() h.Write(signdata) h.Write(wire) signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm) if err != nil { return err } rr.Signature = toBase64(signature) } return nil } func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) { signature, err := k.Sign(rand.Reader, hashed, hash) if err != nil { return nil, err } switch alg { case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512: return signature, nil case ECDSAP256SHA256, ECDSAP384SHA384: ecdsaSignature := &struct { R, S *big.Int }{} if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil { return nil, err } var intlen int switch alg { case ECDSAP256SHA256: intlen = 32 case ECDSAP384SHA384: intlen = 48 } signature := intToBytes(ecdsaSignature.R, intlen) signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...) return signature, nil // There is no defined interface for what a DSA backed crypto.Signer returns case DSA, DSANSEC3SHA1: // t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8) // signature := []byte{byte(t)} // signature = append(signature, intToBytes(r1, 20)...) // signature = append(signature, intToBytes(s1, 20)...) // rr.Signature = signature case ED25519: return signature, nil } return nil, ErrAlg } // Verify validates an RRSet with the signature and key. This is only the // cryptographic test, the signature validity period must be checked separately. // This function copies the rdata of some RRs (to lowercase domain names) for the validation to work. func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error { // First the easy checks if !IsRRset(rrset) { return ErrRRset } if rr.KeyTag != k.KeyTag() { return ErrKey } if rr.Hdr.Class != k.Hdr.Class { return ErrKey } if rr.Algorithm != k.Algorithm { return ErrKey } if strings.ToLower(rr.SignerName) != strings.ToLower(k.Hdr.Name) { return ErrKey } if k.Protocol != 3 { return ErrKey } // IsRRset checked that we have at least one RR and that the RRs in // the set have consistent type, class, and name. Also check that type and // class matches the RRSIG record. if rrset[0].Header().Class != rr.Hdr.Class { return ErrRRset } if rrset[0].Header().Rrtype != rr.TypeCovered { return ErrRRset } // RFC 4035 5.3.2. Reconstructing the Signed Data // Copy the sig, except the rrsig data sigwire := new(rrsigWireFmt) sigwire.TypeCovered = rr.TypeCovered sigwire.Algorithm = rr.Algorithm sigwire.Labels = rr.Labels sigwire.OrigTtl = rr.OrigTtl sigwire.Expiration = rr.Expiration sigwire.Inception = rr.Inception sigwire.KeyTag = rr.KeyTag sigwire.SignerName = strings.ToLower(rr.SignerName) // Create the desired binary blob signeddata := make([]byte, DefaultMsgSize) n, err := packSigWire(sigwire, signeddata) if err != nil { return err } signeddata = signeddata[:n] wire, err := rawSignatureData(rrset, rr) if err != nil { return err } sigbuf := rr.sigBuf() // Get the binary signature data if rr.Algorithm == PRIVATEDNS { // PRIVATEOID // TODO(miek) // remove the domain name and assume its ours? } hash, ok := AlgorithmToHash[rr.Algorithm] if !ok { return ErrAlg } switch rr.Algorithm { case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5: // TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere?? pubkey := k.publicKeyRSA() // Get the key if pubkey == nil { return ErrKey } h := hash.New() h.Write(signeddata) h.Write(wire) return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf) case ECDSAP256SHA256, ECDSAP384SHA384: pubkey := k.publicKeyECDSA() if pubkey == nil { return ErrKey } // Split sigbuf into the r and s coordinates r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2]) s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:]) h := hash.New() h.Write(signeddata) h.Write(wire) if ecdsa.Verify(pubkey, h.Sum(nil), r, s) { return nil } return ErrSig case ED25519: pubkey := k.publicKeyED25519() if pubkey == nil { return ErrKey } if ed25519.Verify(pubkey, append(signeddata, wire...), sigbuf) { return nil } return ErrSig default: return ErrAlg } } // ValidityPeriod uses RFC1982 serial arithmetic to calculate // if a signature period is valid. If t is the zero time, the // current time is taken other t is. Returns true if the signature // is valid at the given time, otherwise returns false. func (rr *RRSIG) ValidityPeriod(t time.Time) bool { var utc int64 if t.IsZero() { utc = time.Now().UTC().Unix() } else { utc = t.UTC().Unix() } modi := (int64(rr.Inception) - utc) / year68 mode := (int64(rr.Expiration) - utc) / year68 ti := int64(rr.Inception) + (modi * year68) te := int64(rr.Expiration) + (mode * year68) return ti <= utc && utc <= te } // Return the signatures base64 encodedig sigdata as a byte slice. func (rr *RRSIG) sigBuf() []byte { sigbuf, err := fromBase64([]byte(rr.Signature)) if err != nil { return nil } return sigbuf } // publicKeyRSA returns the RSA public key from a DNSKEY record. func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey { keybuf, err := fromBase64([]byte(k.PublicKey)) if err != nil { return nil } if len(keybuf) < 1+1+64 { // Exponent must be at least 1 byte and modulus at least 64 return nil } // RFC 2537/3110, section 2. RSA Public KEY Resource Records // Length is in the 0th byte, unless its zero, then it // it in bytes 1 and 2 and its a 16 bit number explen := uint16(keybuf[0]) keyoff := 1 if explen == 0 { explen = uint16(keybuf[1])<<8 | uint16(keybuf[2]) keyoff = 3 } if explen > 4 || explen == 0 || keybuf[keyoff] == 0 { // Exponent larger than supported by the crypto package, // empty, or contains prohibited leading zero. return nil } modoff := keyoff + int(explen) modlen := len(keybuf) - modoff if modlen < 64 || modlen > 512 || keybuf[modoff] == 0 { // Modulus is too small, large, or contains prohibited leading zero. return nil } pubkey := new(rsa.PublicKey) expo := uint64(0) for i := 0; i < int(explen); i++ { expo <<= 8 expo |= uint64(keybuf[keyoff+i]) } if expo > 1<<31-1 { // Larger exponent than supported by the crypto package. return nil } pubkey.E = int(expo) pubkey.N = big.NewInt(0) pubkey.N.SetBytes(keybuf[modoff:]) return pubkey } // publicKeyECDSA returns the Curve public key from the DNSKEY record. func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey { keybuf, err := fromBase64([]byte(k.PublicKey)) if err != nil { return nil } pubkey := new(ecdsa.PublicKey) switch k.Algorithm { case ECDSAP256SHA256: pubkey.Curve = elliptic.P256() if len(keybuf) != 64 { // wrongly encoded key return nil } case ECDSAP384SHA384: pubkey.Curve = elliptic.P384() if len(keybuf) != 96 { // Wrongly encoded key return nil } } pubkey.X = big.NewInt(0) pubkey.X.SetBytes(keybuf[:len(keybuf)/2]) pubkey.Y = big.NewInt(0) pubkey.Y.SetBytes(keybuf[len(keybuf)/2:]) return pubkey } func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey { keybuf, err := fromBase64([]byte(k.PublicKey)) if err != nil { return nil } if len(keybuf) < 22 { return nil } t, keybuf := int(keybuf[0]), keybuf[1:] size := 64 + t*8 q, keybuf := keybuf[:20], keybuf[20:] if len(keybuf) != 3*size { return nil } p, keybuf := keybuf[:size], keybuf[size:] g, y := keybuf[:size], keybuf[size:] pubkey := new(dsa.PublicKey) pubkey.Parameters.Q = big.NewInt(0).SetBytes(q) pubkey.Parameters.P = big.NewInt(0).SetBytes(p) pubkey.Parameters.G = big.NewInt(0).SetBytes(g) pubkey.Y = big.NewInt(0).SetBytes(y) return pubkey } func (k *DNSKEY) publicKeyED25519() ed25519.PublicKey { keybuf, err := fromBase64([]byte(k.PublicKey)) if err != nil { return nil } if len(keybuf) != ed25519.PublicKeySize { return nil } return keybuf } type wireSlice [][]byte func (p wireSlice) Len() int { return len(p) } func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p wireSlice) Less(i, j int) bool { _, ioff, _ := UnpackDomainName(p[i], 0) _, joff, _ := UnpackDomainName(p[j], 0) return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0 } // Return the raw signature data. func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) { wires := make(wireSlice, len(rrset)) for i, r := range rrset { r1 := r.copy() r1.Header().Ttl = s.OrigTtl labels := SplitDomainName(r1.Header().Name) // 6.2. Canonical RR Form. (4) - wildcards if len(labels) > int(s.Labels) { // Wildcard r1.Header().Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "." } // RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase r1.Header().Name = strings.ToLower(r1.Header().Name) // 6.2. Canonical RR Form. (3) - domain rdata to lowercase. // NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR, // HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX, // SRV, DNAME, A6 // // RFC 6840 - Clarifications and Implementation Notes for DNS Security (DNSSEC): // Section 6.2 of [RFC4034] also erroneously lists HINFO as a record // that needs conversion to lowercase, and twice at that. Since HINFO // records contain no domain names, they are not subject to case // conversion. switch x := r1.(type) { case *NS: x.Ns = strings.ToLower(x.Ns) case *MD: x.Md = strings.ToLower(x.Md) case *MF: x.Mf = strings.ToLower(x.Mf) case *CNAME: x.Target = strings.ToLower(x.Target) case *SOA: x.Ns = strings.ToLower(x.Ns) x.Mbox = strings.ToLower(x.Mbox) case *MB: x.Mb = strings.ToLower(x.Mb) case *MG: x.Mg = strings.ToLower(x.Mg) case *MR: x.Mr = strings.ToLower(x.Mr) case *PTR: x.Ptr = strings.ToLower(x.Ptr) case *MINFO: x.Rmail = strings.ToLower(x.Rmail) x.Email = strings.ToLower(x.Email) case *MX: x.Mx = strings.ToLower(x.Mx) case *RP: x.Mbox = strings.ToLower(x.Mbox) x.Txt = strings.ToLower(x.Txt) case *AFSDB: x.Hostname = strings.ToLower(x.Hostname) case *RT: x.Host = strings.ToLower(x.Host) case *SIG: x.SignerName = strings.ToLower(x.SignerName) case *PX: x.Map822 = strings.ToLower(x.Map822) x.Mapx400 = strings.ToLower(x.Mapx400) case *NAPTR: x.Replacement = strings.ToLower(x.Replacement) case *KX: x.Exchanger = strings.ToLower(x.Exchanger) case *SRV: x.Target = strings.ToLower(x.Target) case *DNAME: x.Target = strings.ToLower(x.Target) } // 6.2. Canonical RR Form. (5) - origTTL wire := make([]byte, r1.len()+1) // +1 to be safe(r) off, err1 := PackRR(r1, wire, 0, nil, false) if err1 != nil { return nil, err1 } wire = wire[:off] wires[i] = wire } sort.Sort(wires) for i, wire := range wires { if i > 0 && bytes.Equal(wire, wires[i-1]) { continue } buf = append(buf, wire...) } return buf, nil } func packSigWire(sw *rrsigWireFmt, msg []byte) (int, error) { // copied from zmsg.go RRSIG packing off, err := packUint16(sw.TypeCovered, msg, 0) if err != nil { return off, err } off, err = packUint8(sw.Algorithm, msg, off) if err != nil { return off, err } off, err = packUint8(sw.Labels, msg, off) if err != nil { return off, err } off, err = packUint32(sw.OrigTtl, msg, off) if err != nil { return off, err } off, err = packUint32(sw.Expiration, msg, off) if err != nil { return off, err } off, err = packUint32(sw.Inception, msg, off) if err != nil { return off, err } off, err = packUint16(sw.KeyTag, msg, off) if err != nil { return off, err } off, err = PackDomainName(sw.SignerName, msg, off, nil, false) if err != nil { return off, err } return off, nil } func packKeyWire(dw *dnskeyWireFmt, msg []byte) (int, error) { // copied from zmsg.go DNSKEY packing off, err := packUint16(dw.Flags, msg, 0) if err != nil { return off, err } off, err = packUint8(dw.Protocol, msg, off) if err != nil { return off, err } off, err = packUint8(dw.Algorithm, msg, off) if err != nil { return off, err } off, err = packStringBase64(dw.PublicKey, msg, off) if err != nil { return off, err } return off, nil }